

GNU COBOL 2.0
(Formerly OpenCOBOL)

[11FEB2012 Version]

Programmer’s Guide
2nd Edition, 21 November 2013

Gary Cutler

CutlerGL@gmail.com

OpenCOBOL Copyright © 2001-2009 Keisuke Nishida
OpenCOBOL Copyright © 2006-2012 Roger While

Under the terms of the GNU General Public License

Document Copyright © 2009-2013 Gary Cutler

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License [FDL], Version 1.3

or any later version published by the Free Software Foundation;
with Invariant Section “What is GNU COBOL?”, no Front-Cover Texts, and no Back-Cover Texts

A copy of the FDL is included in the section entitled "GNU Free Documentation License"

mailto:CutlerGL@gmail.com

GNU COBOL is an evolving tool.

While all reasonable attempts will be made to maintain the currency of the information in this document, neither the
author of this document nor the authors of the GNU COBOL software, extend any warranties of any kind for this
document or for the information contained therein.

Summary of Changes

Edition Date Change Description

2nd

17 July 2012 Updated for version 11FEB2012 of GNU COBOL 2.0

Documentation Enhancements:

 The use of a slash character (“/”) in column 7 was documented – this feature has existed since
at least the 06FEB2009 version of OpenCOBOL 1.1, but was undocumented (section 1.6)

 Added documentation on the DEBUG-ITEM special register (section 6.1.8).

 Updated DECLARATIVES documentation to better explain how to use it. See section 6.1.4.

 A new section was added to the documentation to discuss the ramifications, rules and
capabilities of sub-programming (section 7).

 Documentation was added on the COB_SET_DEBUG environment variable (section 8.1.4).

 The listings of all sample programs in chapter 9 are now presented as listings generated by the
GNU COBOL Interactive Compiler utility (itself included as a sample program in section 9.4).
This not only shows full source listings of the sample programs but complete cross-reference
listings as well.

 A new sample program – DAY-FROM-DATE – was introduced to illustrate how to write a user-
defined function (section 9.3)

Documentation of New Features and Functionality:

 User-defined functions are now supported (sections 3, 7.1, 7.4.2 and 9.3)
 A new built-in subroutine – C$PRINTABLE – was introduced (section 8.3.1.11) (the COBDUMP
sample program (section 10.2) now uses it!

7 July 2011 Updated for pre-release version 29APR2011 of OpenCOBOL 2.0

Documentation Corrections:

 Corrected a problem with bogus footnote references in Figure 6-23.

Documentation Enhancements:

 A reference to a new figure documenting error codes was added to the EXCEPTION-STATUS
function (section 6.1.7.21).

 Documentation was added to the CLOSE statement (section 6.4.7) to explicitly document how
the last record written to a LINE SEQUENTIAL or LINE ADVANCING file may have a terminating
delimiter sequence written at the time the file is closed.

 Documentation was added to the WRITE statement (section 6.4.50) to explicitly document
how the ADVANCING options are handled with LINE SEQUENTIAL and the new LINE
ADVANCING files.

 Additional documentation on the cobcrun command (section 8.2.2) was added.

Documentation of New Features and Functionality:

 LINE ADVANCING files are now supported (section 1.3.3.5).

 Floating-point literals of the form [+-]nn.nnE[+-]nn are now supported (section 1.8)

 Z”xxxxx” null-delimited alphanumeric literals are now supported (section 1.8)

 The COPY statement now supports the COBOL2002 standard LEADING and TRAILING options
as well as the “IN/OF library-name” and SUPPRESS PRINTING options (section 2.1.1)

 The REPLACE Compiler-Directing Facility (CDF) statement was introduced (section 2.1.2)

 Conditional code generation is now supported through the use of >>DEFINE, >>IF, >>SET,
>>SOURCE and >>TURN Compiler-Directing Facility (CDF) directives (section 2.2)

 The COB_LINE_TRACE environment variable was renamed to COB_SET_TRACE (section 8.2.4).

 The COB_DISPLAY_WARNINGS (section 8.2.4) environment variable was introduced.

 SOURCE-COMPUTER WITH DEBUGGING MODE is now supported (section 4.1.1)

 The CHARACTER CLASSIFICATION clause of the OBJECT-COMPUTER clause is now supported

(section 4.1.2).

 Mnemonic names are now optional for SWITCH declarations in SPECIAL-NAMES (section
4.1.4); Eight new switches (SWITCH-0, SWITCH-9 thru SWITCH-15) are now available; Switches
may be specified as SW0 thru SW15 as well as SWITCH-0 thru SWITCH-15; a new print channel
designation of CSP is now available; SYMBOLIC CHARACTERS are now supported (section
4.1.4)

 The device name DISC may now be used interchangeably with DISK in SELECT statements
(section 4.2.1)

 Files may now be SELECTed with the “NOT OPTIONAL” designation in addition to “OPTIONAL”
(section 4.2.1).

 New USAGEs of BINARY-INT, BINARY-LONG-LONG and COMPUTATIONAL-6 (Figure 5-10 and
section 7.8.3) were introduced.

 The LEFTLINE screen attribute was added to the SCREEN SECTION (section 5.6).

 New intrinsic functions were introduced:

o MODULE-CALLER-ID (section 6.1.7.47)
o MODULE-DATE (section 6.1.7.48)
o MODULE-FORMATTED-DATE (section 6.1.7.49)
o MODULE-ID (section 6.1.7.50)
o MODULE-PATH (section 6.1.7.51)
o MODULE-SOURCE (section 6.1.7.52)
o MODULE-TIME (section 6.1.7.53)

 A new option - WITH KEPT LOCK (section 6.1.9.2) - was added to the READ verb.

 USE FOR DEBUGGING is now supported (section 6.1.4)

 The following changes were made to the ACCEPT Statement

 The TIMEOUT option was added to Format 4 (section 6.4.1.4).

 The non-functional CONVERSION option was added to Format 4 (section 6.4.1.4).

 The LINE NUMBER option (a synonym for LINES) and COLS option (a synonym for
COLUMNS) and ESCAPE KEY options were added to Format 6 (section 6.4.1.6)

 A new format – Format 7 – was introduced (section 6.4.1.7)

 The ALTER verb (section 6.4.4) is now supported [Editorial Comment: this change was made
only because NIST tests need it and not because you should be using it!]

 Options (mnemonic-name, STDCALL and STATIC) were added to the CALL verb (section 6.4.5).

 The non-functional CONVERSION option was added to Format 4 of the DISPLAY statement
(section 6.4.12.4).

 The REVERSED option for the OPEN statement is now supported syntactically, even though it is
non-functional (section 6.4.29).

 The READY TRACE (section 6.4.32) and RESET TRACE (section 6.4.34) statements were
introduced.

 A new option – STATUS – was added to the STOP verb (section 6.4.42).

 The following built-in named subroutines were added:

 C$CALLEDBY (section 8.3.1.1)
 C$GETPID (section 8.3.1.6)
 CBL_GET_CSR_POS (section 8.3.1.29)
 CBL_GET_SCR_SIZE (section 8.3.1.30)

 The following built-in numbered subroutines were added:

 X”E4” (section 8.3.2.2)
 X”E5” (section 8.3.2.3)

1st

17 Sept 2010 Introduced documentation for the hitherto undocumented “COBCPY” environment variable
(sections 8.1.4 and 8.1.5).

 Corrected “section 0” broken hyperlinks in the document.

1 Apr 2010 Elaborated on the use of the GLOBAL clause in data item definitions (section 5.3).

23 Jan 2010 INITIAL RELEASE OF DOCUMENT – corresponds to version 06FEB2009 of OpenCOBOL 1.1

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version i

Table of Contents

1. INTRODUCTION ... 1-1

1.1. What is GNU COBOL? ... 1-1
1.2. Additional References and Documents .. 1-1
1.3. Introducing COBOL .. 1-1

1.3.1. “I Heard COBOL is a Dead Language!” ... 1-1
1.3.2. Programmer Productivity – The “Holy Grail” ... 1-3
1.3.3. Notable COBOL/GNU COBOL Features .. 1-4

1.3.3.1. Basic Program Readability .. 1-4
1.3.3.2. COBOL Program Structure .. 1-6
1.3.3.3. Copybooks ... 1-6
1.3.3.4. Structured Data .. 1-7
1.3.3.5. Files .. 1-7
1.3.3.6. Table Handling ... 1-9
1.3.3.7. Sorting and Merging Data .. 1-10
1.3.3.8. String Manipulation ... 1-10
1.3.3.9. Textual-User Interface (TUI) Features ... 1-12

1.4. Syntax Description Conventions .. 1-2
1.5. General GNU COBOL Program Format ... 1-3

1.5.1. Source Line Format ... 1-3
1.5.1.1. Fixed Format Mode .. 1-3
1.5.1.2. Free Format Mode.. 1-4

1.5.2. Program Structure... 1-4
1.6. In-Program Documentation (i.e. “Comments”) .. 1-5
1.7. Use of Commas and Semicolons .. 1-6
1.8. Use of Literals .. 1-6

1.8.1. Numeric Literals .. 1-6
1.8.2. Alphanumeric Literals ... 1-7

1.9. Use of Figurative Constants ... 1-8
1.10. User-Defined Names .. 1-8
1.11. Use of LENGTH OF .. 1-8

2. THE GNU COBOL COMPILER DIRECTING FACILITY [CDF] .. 2-1

2.1. Text Manipulation Statements .. 2-1
2.1.1. The COPY Statement ... 2-1
2.1.2. The REPLACE Statement .. 2-1

2.2. CDF Directives .. 2-2
2.2.1. The >>DEFINE Directive ... 2-2
2.2.2. The >>IF Directive ... 2-3
2.2.3. The >>SET Directive ... 2-4
2.2.4. The >>SOURCE Directive ... 2-5
2.2.5. The >>TURN Directive ... 2-5

3. IDENTIFICATION DIVISION ... 3-1

4. ENVIRONMENT DIVISION .. 4-1

4.1. CONFIGURATION SECTION ... 4-1
4.1.1. SOURCE-COMPUTER Paragraph .. 4-1
4.1.2. OBJECT-COMPUTER Paragraph ... 4-2
4.1.3. REPOSITORY Paragraph ... 4-3
4.1.4. SPECIAL-NAMES Paragraph ... 4-4

4.1.4.1. The alphabet-name Clause ... 4-6
4.1.4.2. The class-name Clause ... 4-6
4.1.4.3. The switch-definition Clause ... 4-7
4.1.4.4. The symbolic-characters clause .. 4-7

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version ii

4.2. INPUT-OUTPUT SECTION.. 4-8
4.2.1. File SELECT Statement ... 4-9

4.2.1.1. SELECT Without an “organization-clause” .. 4-11
4.2.1.2. ORGANIZATION SEQUENTIAL Files ... 4-11
4.2.1.3. ORGANIZATION LINE SEQUENTIAL Files ... 4-12
ORGANIZATION RELATIVE Files ... 4-13
4.2.1.4. ORGANIZATION INDEXED Files ... 4-14

4.2.2. I-O-CONTROL Paragraph ... 4-15

5. DATA DIVISION ... 5-1

5.1. File Or Sort/Merge File Descriptions .. 5-2
5.1.1. Record Descriptions .. 5-4

5.2. Describing Data Items .. 5-4
5.2.1. Defining non-SCREEN SECTION Data Items .. 5-6

5.2.1.1. ANY LENGTH Clause ... 5-7
5.2.1.2. BASED Clause ... 5-7
5.2.1.3. BLANK WHEN ZERO Clause ... 5-7
5.2.1.4. JUSTIFIED Clause .. 5-7
5.2.1.5. OCCURS Clause ... 5-8
5.2.1.6. PICTURE Clause .. 5-8
5.2.1.7. REDEFINES Clause ... 5-13
5.2.1.8. RENAMES Clause .. 5-14
5.2.1.9. SIGN Clause .. 5-14
5.2.1.10. SYNCHRONIZED Clause ... 5-15
5.2.1.11. USAGE Clause ... 5-15
5.2.1.12. VALUE Clause ... 5-18

5.2.2. Defining SCREEN SECTION Data Items ... 5-20
5.2.2.1. AUTO | AUTO-SKIP | AUTOTERMINATE Clause .. 5-21
5.2.2.2. BACKGROUND-COLOR Clause ... 5-21
5.2.2.3. BEEP | BELL Clause ... 5-21
5.2.2.4. BLANK LINE and BLANK SCREEN Clauses ... 5-22
5.2.2.5. BLANK WHEN ZERO Clause ... 5-22
5.2.2.6. BLINK Clause .. 5-22
5.2.2.7. COLUMN Clause ... 5-22
5.2.2.8. ERASE EOL and ERASE EOS Clauses ... 5-23
5.2.2.9. FOREGROUND-COLOR Clause ... 5-23
5.2.2.10. FROM, TO and USING Clauses .. 5-23
5.2.2.11. FULL | LENGTH-CHECK Clause ... 5-23
5.2.2.12. HIGHLIGHT and LOWLIGHT Clauses .. 5-24
5.2.2.13. JUSTIFIED Clause .. 5-24
5.2.2.14. LEFTLINE, OVERLINE and UNDERLINE Clauses ... 5-24
5.2.2.15. LINE Clause ... 5-24
5.2.2.16. OCCURS Clause ... 5-25
5.2.2.17. PICTURE Clause .. 5-25
5.2.2.18. PROMPT Clause .. 5-25
5.2.2.19. REQUIRED | EMPTY-CHECK Clause ... 5-25
5.2.2.20. REVERSE-VIDEO Clause ... 5-25
5.2.2.21. SECURE | NO-ECHO Clause ... 5-26
5.2.2.22. SIGN Clause .. 5-26
5.2.2.23. VALUE Clause ... 5-26

5.2.3. 01-Level Constant Descriptions ... 5-26
5.2.4. 66-Level Data Descriptions (RENAMES) ... 5-28
5.2.5. 77-Level Data Descriptions .. 5-28
5.2.6. 78-Level Constant Descriptions ... 5-29
5.2.7. 88-Level Condition Names .. 5-29

6. PROCEDURE DIVISION .. 6-1

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version iii

6.1. General PROCEDURE DIVISION Components ... 6-1
6.1.1. Table References ... 6-1
6.1.2. Qualification of Data Names ... 6-4
6.1.3. Reference Modifiers .. 6-5
6.1.4. Expressions ... 6-6

6.1.4.1. Arithmetic Expressions ... 6-6
6.1.4.2. Conditional Expressions ... 6-8

6.1.5. Use of Periods (.) ... 6-11
6.1.6. Use of “VERB” / “END-VERB” Constructs ... 6-12
6.1.7. Intrinsic Functions ... 6-21

6.1.7.1. ABS(number) .. 6-21
6.1.7.2. ACOS(cosine) .. 6-21
6.1.7.3. ANNUITY(interest-rate, number-of-periods) ... 6-21
6.1.7.4. ASIN(sine) ... 6-22
6.1.7.5. ATAN(tangent) ... 6-22
6.1.7.6. BYTE-LENGTH(string) .. 6-22
6.1.7.7. CHAR(integer) .. 6-22
6.1.7.8. COMBINED-DATETIME(days, seconds) .. 6-22
6.1.7.9. CONCATENATE(string-1 [, string-2] …) ... 6-22
6.1.7.10. COS(angle) ... 6-23
6.1.7.11. CURRENCY-SYMBOL ... 6-23
6.1.7.12. CURRENT-DATE .. 6-23
6.1.7.13. DATE-OF-INTEGER(integer) ... 6-23
6.1.7.14. DATE-TO-YYYYMMDD(yymmdd [, yy-cutoff]) .. 6-23
6.1.7.15. DAY-OF-INTEGER(integer) .. 6-23
6.1.7.16. DAY-TO-YYYYDDD(yyddd [, yy-cutoff]) ... 6-24
6.1.7.17. E ... 6-24
6.1.7.18. EXCEPTION-FILE .. 6-24
6.1.7.19. EXCEPTION-LOCATION .. 6-24
6.1.7.20. EXCEPTION-STATEMENT ... 6-25
6.1.7.21. EXCEPTION-STATUS .. 6-25
6.1.7.22. EXP(number) .. 6-25
6.1.7.23. EXP10(number) .. 6-25
6.1.7.24. FACTORIAL(number) ... 6-25
6.1.7.25. FRACTION-PART(number) ... 6-25
6.1.7.26. HIGHEST-ALGEBRAIC(numeric-identifier) .. 6-25
6.1.7.27. INTEGER(number) ... 6-25
6.1.7.28. INTEGER-OF-DATE(date) ... 6-26
6.1.7.29. INTEGER-OF-DAY(date) .. 6-26
6.1.7.30. INTEGER-PART(number) ... 6-26
6.1.7.31. LENGTH(string) ... 6-26
6.1.7.32. LENGTH-AN(string) ... 6-26
6.1.7.33. LOCALE-COMPARE(argument-1, argument-2 [, locale]) .. 6-26
6.1.7.34. LOCALE-DATE(date [, locale]) .. 6-27
6.1.7.35. LOCALE-TIME(time [, locale]) .. 6-27
6.1.7.36. LOCALE-TIME-FROM-SECS(seconds [, locale]) ... 6-27
6.1.7.37. LOG(number) .. 6-27
6.1.7.38. LOG10(number) .. 6-27
6.1.7.39. LOWER-CASE(string) ... 6-27
6.1.7.40. LOWEST-ALGEBRAIC(numeric-identifier) .. 6-27
6.1.7.41. MAX(number-1 [, number-2] …) ... 6-27
6.1.7.42. MEAN(number-1 [, number-2] …) .. 6-27
6.1.7.43. MEDIAN(number-1 [, number-2] …) ... 6-28
6.1.7.44. MIDRANGE(number-1 [, number-2] …) .. 6-28
6.1.7.45. MIN(number-1 [, number-2] …).. 6-28
6.1.7.46. MOD(value, modulus) .. 6-28
6.1.7.47. MODULE-CALLER-ID ... 6-28

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version iv

6.1.7.48. MODULE-DATE ... 6-28
6.1.7.49. MODULE-FORMATTED-DATE .. 6-28
6.1.7.50. MODULE-ID .. 6-28
6.1.7.51. MODULE-PATH ... 6-29
6.1.7.52. MODULE-SOURCE ... 6-29
6.1.7.53. MODULE-TIME ... 6-29
6.1.7.54. MONETARY-DECIMAL-POINT .. 6-30
6.1.7.55. MONETARY-THOUSANDS-SEPARATOR ... 6-30
6.1.7.56. NUMERIC-DECIMAL-POINT ... 6-30
6.1.7.57. NUMERIC-THOUSANDS-SEPARATOR .. 6-30
6.1.7.58. NUMVAL(string) ... 6-30
6.1.7.59. NUMVAL-C(string [, symbol]) ... 6-31
6.1.7.60. NUMVAL-F(string) .. 6-31
6.1.7.61. ORD(char) ... 6-31
6.1.7.62. ORD-MAX(char-1 [, char-2] …) ... 6-32
6.1.7.63. ORD-MIN(char-1 [, char-2] …) .. 6-32
6.1.7.64. PI .. 6-32
6.1.7.65. PRESENT-VALUE(rate, value-1 [, value-2]) .. 6-32
6.1.7.66. RANDOM [(seed)] ... 6-32
6.1.7.67. RANGE(number-1 [, number-2] …) ... 6-33
6.1.7.68. REM(number, divisor) ... 6-33
6.1.7.69. REVERSE(string) .. 6-33
6.1.7.70. SECONDS-FROM-FORMATTED-TIME(format, time) .. 6-33
6.1.7.71. SECONDS-PAST-MIDNIGHT ... 6-33
6.1.7.72. SIGN(number) ... 6-33
6.1.7.73. SIN(angle) .. 6-33
6.1.7.74. SQRT(number) .. 6-33
6.1.7.75. STANDARD-DEVIATION(number-1 [, number-2] …) .. 6-33
6.1.7.76. STORED-CHAR-LENGTH(string) ... 6-34
6.1.7.77. SUBSTITUTE(string, from-1, to-1 [, from-n, to-n]) .. 6-34
6.1.7.78. SUBSTITUTE-CASE(string, from-1, to-1 [, from-n, to-n]) ... 6-34
6.1.7.79. SUM(number-1 [, number-2] …) ... 6-34
6.1.7.80. TAN(angle) ... 6-34
6.1.7.81. TEST-DATE-YYYYMMDD(date) .. 6-34
6.1.7.82. TEST-DAY-YYYYDDD(date) .. 6-34
6.1.7.83. TEST-NUMVAL(string) .. 6-34
6.1.7.84. TEST-NUMVAL-C(string [, symbol]) .. 6-34
6.1.7.85. TEST-NUMVAL-F(string) .. 6-35
6.1.7.86. TRIM(string[, LEADING|TRAILING]) .. 6-35
6.1.7.87. UPPER-CASE(string) .. 6-35
6.1.7.88. VARIANCE(number-1 [, number-2] …) .. 6-35
6.1.7.89. YEAR-TO-YYYY (yy [, yy-cutoff]) .. 6-35

6.1.8. Special Registers ... 6-19
6.1.9. Controlling Concurrent Access to Files .. 6-13

6.1.9.1. File Sharing ... 6-14
6.1.9.2. Record Locking ... 6-14

6.1.10. Common Clauses On Executable Statements .. 6-15
6.1.10.1. AT END / NOT AT END .. 6-15
6.1.10.2. CORRESPONDING Option ... 6-16
6.1.10.3. INVALID KEY / NOT INVALID KEY .. 6-17
6.1.10.4. ON EXCEPTION / NOT ON EXCEPTION .. 6-17
6.1.10.5. ON OVERFLOW / NOT ON OVERFLOW .. 6-17
6.1.10.6. ON SIZE ERROR / NOT ON SIZE ERROR .. 6-18
6.1.10.7. Rounding Options ... 6-18

6.2. General Format of the PROCEDURE DIVISION .. 6-1
6.2.1. General Format for Subprogram Arguments ... 6-1
6.2.2. General Format for DECLARATIVES Procedures ... 6-2

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version v

6.3. PROCEDURE DIVISION Sections and Paragraphs .. 6-2
6.4. GNU COBOL Statements .. 6-19

6.4.1. ACCEPT.. 6-35
6.4.1.1. ACCEPT Format 1 – Read from Console .. 6-35
6.4.1.2. ACCEPT Format 2 – Retrieve Command-Line Arguments .. 6-36
6.4.1.3. ACCEPT Format 3 – Retrieve Environment Variable Values .. 6-36
6.4.1.4. ACCEPT Format 4 – Retrieve Full-Screen Data .. 6-37
6.4.1.5. ACCEPT Format 5 – Retrieve Date/Time ... 6-39
6.4.1.6. ACCEPT Format 6 - Retrieve Screen Information .. 6-40
6.4.1.7. ACCEPT Format 7 – Retrieve Run-Time Information ... 6-40

6.4.2. ADD .. 6-42
6.4.2.1. ADD Format 1 – ADD TO ... 6-42
6.4.2.2. ADD Format 2 – ADD GIVING .. 6-42
6.4.2.3. ADD Format 3 – ADD CORRESPONDING ... 6-43

6.4.3. ALLOCATE ... 6-44
6.4.4. ALTER .. 6-45
6.4.5. CALL .. 6-46
6.4.6. CANCEL ... 6-49
6.4.7. CLOSE .. 6-50
6.4.8. COMMIT ... 6-51
6.4.9. COMPUTE ... 6-52
6.4.10. CONTINUE ... 6-53
6.4.11. DELETE .. 6-54
6.4.12. DISPLAY ... 6-55

6.4.12.1. DISPLAY Format 1 – “UPON “device” .. 6-55
6.4.12.2. DISPLAY Format 2 – Access Command-Line Arguments .. 6-55
6.4.12.3. DISPLAY Format 3 – Access or Set Environment Variables .. 6-56
6.4.12.4. DISPLAY Format 4 – Screen Data .. 6-56

6.4.13. DIVIDE ... 6-58
6.4.13.1. DIVIDE Format 1 – DIVIDE INTO .. 6-58
6.4.13.2. DIVIDE Format 2 – DIVIDE INTO GIVING ... 6-58
6.4.13.3. DIVIDE Format 3 – DIVIDE BY GIVING ... 6-59

6.4.14. ENTRY ... 6-60
6.4.15. EVALUATE ... 6-61
6.4.16. EXIT ... 6-63
6.4.17. FREE .. 6-65
6.4.18. GENERATE ... 6-66
6.4.19. GOBACK .. 6-67
6.4.20. GO TO ... 6-68

6.4.20.1. GO TO Format 1 – Simple GO TO .. 6-68
6.4.20.2. GO TO Format 2 – GO TO DEPENDING ON .. 6-68

6.4.21. IF ... 6-69
6.4.22. INITIALIZE .. 6-70
6.4.23. INITIATE .. 6-73
6.4.24. INSPECT ... 6-74

6.4.24.1. TALLYING Clause Syntax, Rules and Operation ... 6-74
6.4.24.2. REPLACING Clause Syntax, Rules and Operation... 6-75
6.4.24.3. CONVERTING Clause Syntax, Rules and Operation ... 6-76
6.4.24.4. INSPECT Region Clause, Rules and Operation ... 6-76

6.4.25. MERGE .. 6-78
6.4.26. MOVE .. 6-80

6.4.26.1. MOVE Format 1 – Simple MOVE ... 6-80
6.4.26.2. MOVE Format 2 – MOVE CORRESPONDING .. 6-80

6.4.27. MULTIPLY .. 6-81
6.4.27.1. MULTIPLY Format 1 – MULTIPLY BY .. 6-81
6.4.27.2. MULTIPLY Format 2 – MULTIPLY GIVING .. 6-81

6.4.28. NEXT SENTENCE .. 6-82

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version vi

6.4.29. OPEN ... 6-83
6.4.30. PERFORM .. 6-85

6.4.30.1. PERFORM Format 1 – Procedural ... 6-85
6.4.30.2. PERFORM Format 2 – Inline .. 6-88

6.4.31. READ ... 6-90
6.4.31.1. READ Format 1 – Sequential READ ... 6-90
6.4.31.2. READ Format 2 – Random Read .. 6-91

6.4.32. READY TRACE .. 6-93
6.4.33. RELEASE .. 6-94
6.4.34. RESET TRACE ... 6-95
6.4.35. RETURN ... 6-96
6.4.36. REWRITE ... 6-97
6.4.37. ROLLBACK ... 6-98
6.4.38. SEARCH ... 6-99

6.4.38.1. SEARCH Format 1 – Sequential Search .. 6-99
6.4.38.2. SEARCH Format 2 – Binary, or Half-interval Search (SEARCH ALL) ... 6-100

6.4.39. SET .. 6-102
6.4.39.1. SET Format 1 – SET ENVIRONMENT .. 6-102
6.4.39.2. SET Format 2 – SET Program-Pointer .. 6-102
6.4.39.3. SET Format 3 – SET ADDRESS .. 6-102
6.4.39.4. SET Format 4 – SET Index .. 6-103
6.4.39.5. SET Format 5 – SET UP/DOWN ... 6-103
6.4.39.6. SET Format 6 – SET Condition Name ... 6-104
6.4.39.7. SET Format 7 – SET Switch .. 6-104
6.4.39.8. SET Format 8 – SET ATTRIBUTE ... 6-104

6.4.40. SORT ... 6-105
6.4.40.1. SORT Format 1 – File-based Sort... 6-105
6.4.40.2. SORT Format 2 – Table Sort .. 6-107

6.4.41. START .. 6-108
6.4.42. STOP ... 6-109
6.4.43. STRING .. 6-110
6.4.44. SUBTRACT ... 6-111

6.4.44.1. SUBTRACT Format 1 – SUBTRACT FROM... 6-111
6.4.44.2. SUBTRACT Format 2 – SUBTRACT GIVING ... 6-111
6.4.44.3. SUBTRACT Format 3 – SUBTRACT CORRESPONDING .. 6-112

6.4.45. SUPPRESS .. 6-113
6.4.46. TERMINATE ... 6-114
6.4.47. TRANSFORM ... 6-115
6.4.48. UNLOCK .. 6-116
6.4.49. UNSTRING ... 6-117
6.4.50. WRITE ... 6-119

7. SUB-PROGRAMMING WITH GNU COBOL .. 7-2

7.1. Subprograms, Subroutines and User-Defined Functions .. 7-2
7.2. Specifying and Using Alternate Entry Points .. 7-2
7.3. Dynamic Versus Static Subprograms .. 7-2
7.4. Subprogram Execution Flow .. 7-3

7.4.1. Subroutine Execution Flow ... 7-3
7.4.2. User-Defined Function Execution Flow.. 7-4

7.5. Sharing Data Between Calling and Called Programs ... 7-5
7.5.1. Subprogram Arguments .. 7-5

7.5.1.1. Calling Program Considerations .. 7-5
7.5.1.2. Called Program Considerations .. 7-6

7.5.2. GLOBAL Data Items ... 7-6
7.5.3. EXTERNAL Data Items ... 7-7

7.6. Nested Subprograms ... 7-8
7.7. Recursive GNU COBOL Subprograms ... 7-8

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version vii

7.8. Combining COBOL and C Programs .. 7-10
7.8.1. GNU COBOL Run-Time Library Requirements .. 7-10
7.8.2. String Allocation Differences Between GNU COBOL and C .. 7-10
7.8.3. Matching C Data Types with GNU COBOL USAGEs .. 7-10
7.8.4. GNU COBOL Main Programs CALLing C Subprograms .. 7-12
7.8.5. C Main Programs CALLing GNU COBOL Subprograms .. 7-13

8. THE GNU COBOL SYSTEM INTERFACE ... 8-1

8.1. Using the GNU COBOL Compiler (cobc) .. 8-1
8.1.1. Introduction .. 8-1
8.1.2. Syntax and Options ... 8-1
8.1.3. Compiling GNU COBOL Programs .. 8-3

8.1.3.1. Compiling Directly-Executable GNU COBOL Programs .. 8-3
8.1.3.2. Compiling Dynamically-Loadable GNU COBOL Subprograms .. 8-3
8.1.3.3. Compiling Static GNU COBOL Subprograms .. 8-3

8.1.4. Important Compilation-Time Environment Variables .. 8-4
8.1.5. Locating Copybooks at Compilation Time ... 8-5
8.1.6. Using Compiler Configuration Files ... 8-6

8.2. Running GNU COBOL Programs ... 8-7
8.2.1. Executing Programs Directly ... 8-7
8.2.2. Using the “cobcrun” Utility ... 8-8
8.2.3. Program Arguments .. 8-9
8.2.4. Important Execution-Time Environment Variables .. 8-9

8.3. Built-In System Subroutines ... 8-11
8.3.1. “Call by Name” Routines ... 8-11

8.3.1.1. CALL “C$CALLEDBY” USING prog-name-area .. 8-11
8.3.1.2. CALL “C$CHDIR” USING directory-path, result .. 8-12
8.3.1.3. CALL “C$COPY” USING src-file-path, dest-file-path, 0 ... 8-12
8.3.1.4. CALL “C$DELETE” USING file-path, 0 ... 8-12
8.3.1.5. CALL “C$FILEINFO” USING file-path, file-info .. 8-12
8.3.1.6. CALL “C$GETPID” .. 8-13
8.3.1.7. CALL “C$JUSTIFY” USING data-item, “justification-type” .. 8-13
8.3.1.8. CALL “C$MAKEDIR” USING dir-path.. 8-13
8.3.1.9. CALL “C$NARG” USING arg-count-result... 8-13
8.3.1.10. CALL “C$PARAMSIZE” USING argument-number .. 8-13
8.3.1.11. CALL “C$PRINTABLE” USING data-item [, char] ... 8-13
8.3.1.12. CALL “C$SLEEP” USING seconds-to-sleep .. 8-14
8.3.1.13. CALL “C$TOLOWER” USING data-item, BY VALUE convert-length ... 8-14
8.3.1.14. CALL “C$TOUPPER” USING data-item, BY VALUE convert-length .. 8-14
8.3.1.15. CALL “CBL_AND” USING item-1, item-2, BY VALUE byte-length .. 8-14
8.3.1.16. CALL “CBL_CHANGE_DIR” USING directory-path .. 8-14
8.3.1.17. CALL “CBL_CHECK_FILE_EXIST” USING file-path, file-info ... 8-15
8.3.1.18. CALL “CBL_CLOSE_FILE” USING file-handle ... 8-15
8.3.1.19. CALL “CBL_COPY_FILE” USING src-file-path, dest-file-path ... 8-15
8.3.1.20. CALL “CBL_CREATE_DIR” USING dir-path .. 8-15
8.3.1.21. CALL “CBL_CREATE_FILE” USING file-path, 2, 0, 0, file-handle .. 8-15
8.3.1.22. CALL “CBL_DELETE_DIR” USING dir-path .. 8-16
8.3.1.23. CALL “CBL_DELETE_FILE” USING file-path ... 8-16
8.3.1.24. CALL “CBL_ERROR_PROC” USING function, program-pointer ... 8-16
8.3.1.25. CALL “CBL_EXIT_PROC” USING function, program-pointer ... 8-17
8.3.1.26. CALL “CBL_EQ” USING item-1, item-2, BY VALUE byte-length ... 8-18
8.3.1.27. CALL “CBL_FLUSH_FILE” USING file-handle ... 8-19
8.3.1.28. CALL “CBL_GET_CURRENT_DIR” USING BY VALUE 0, BY VALUE length, BY REFERENCE buffer 8-19
8.3.1.29. CALL “CBL_GET_CSR_POS” USING cursor-locn-buffer ... 8-19
8.3.1.30. CALL “CBL_GET_SCR_SIZE” USING no-of-lines, no-of-cols ... 8-19
8.3.1.31. CALL “CBL_IMP” USING item-1, item-2, BY VALUE byte-length ... 8-20
8.3.1.32. CALL “CBL_NIMP” USING item-1, item-2, BY VALUE byte-length .. 8-20

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version viii

8.3.1.33. CALL “CBL_NOR” USING item-1, item-2, BY VALUE byte-length .. 8-20
8.3.1.34. CALL “CBL_NOT” USING item-1, BY VALUE byte-length .. 8-21
8.3.1.35. CALL “CBL_OC_NANOSLEEP” USING nanoseconds-to-sleep .. 8-21
8.3.1.36. CALL “CBL_OPEN_FILE” file-path, access-mode, 0, 0, handle .. 8-21
8.3.1.37. CALL “CBL_OR” USING item-1, item-2, BY VALUE byte-length .. 8-21
8.3.1.38. CALL “CBL_READ_FILE” USING handle, offset, nbytes, flag, buffer .. 8-22
8.3.1.39. CALL “CBL_RENAME_FILE” USING old-file-path, new-file-path ... 8-22
8.3.1.40. CALL “CBL_TOLOWER” USING data-item, BY VALUE convert-length ... 8-22
8.3.1.41. CALL “CBL_TOUPPER” USING data-item, BY VALUE convert-length .. 8-22
8.3.1.42. CALL “CBL_WRITE_FILE” USING handle, offset, nbytes, 0, buffer .. 8-23
8.3.1.43. CALL “CBL_XOR” USING item-1, item-2, BY VALUE byte-length .. 8-23
8.3.1.44. CALL “SYSTEM” USING command ... 8-23

8.3.2. “Call by Number” Subroutines .. 8-23
8.3.2.1. CALL X”91” USING return-code, function-code, binary-variable-arg ... 8-24
8.3.2.2. CALL X“E4” ... 8-24
8.3.2.3. CALL X”E5” ... 8-24
8.3.2.4. CALL X”F4” USING byte, table ... 8-25
8.3.2.5. CALL X”F5” USING byte, table ... 8-25

8.4. Binary Truncation .. 8-25

9. SAMPLE PROGRAMS ... 10-1

9.1. FileStat-Msgs.cpy – File Status Values .. 10-1
9.2. COBDUMP – A Hex/Char Data Dump Subroutine ... 10-2
9.3. DAY-FROM-DATE – Determine Day of Week From a Date .. 10-11
9.4. GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End .. 10-15
9.5. STREAMIO – A Utility Subroutine to Simplify Stream I/O ... 10-109
9.6. WINSYSTEM – Execute Windows Shell Commands (For Cygwin) Error! Bookmark not defined.

10. GLOSSARY OF TERMS .. 11-1

INDEX ... I

GNU FREE DOCUMENTATION LICENSE .. IX

Figures

Figure 1-1 - A Sample TUI Screen .. 1-12
Figure 1-2 – General Format of a GNU COBOL Program ... 1-4
Figure 1-3 - Figurative Constants ... 1-8
Figure 2-1 - COPY Syntax ... 2-1
Figure 2-2 - REPLACE (Format 1) Syntax .. 2-2
Figure 2-3 - REPLACE (Format 2) Syntax .. 2-2
Figure 2-4 - >>DEFINE Syntax .. 2-2
Figure 2-5 - >>IF Syntax ... 2-3
Figure 2-6 - >>IF constant-conditional-expression Format ... 2-3
Figure 2-7 - >>SET Syntax .. 2-4
Figure 2-8 - >>SOURCE Syntax ... 2-5
Figure 2-9 - >>TURN Syntax ... 2-5
Figure 3-1 - IDENTIFICATION DIVISION Syntax .. 3-1
Figure 4-1 - ENVIRONMENT DIVISION Syntax .. 4-1
Figure 4-2 - CONFIGURATION SECTION Syntax ... 4-1
Figure 4-3 - SOURCE-COMPUTER Paragraph Syntax ... 4-1
Figure 4-4 - OBJECT-COMPUTER Paragraph Syntax ... 4-2
Figure 4-5 - REPOSITORY Paragraph Syntax .. 4-3
Figure 4-6 - SPECIAL-NAMES Paragraph Syntax... 4-4
Figure 4-7 – Typical Locale Codes .. 4-5
Figure 4-8 - Built-In GNU COBOL Device Names .. 4-5

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version ix

Figure 4-9 - The SPECIAL-NAMES "alphabet-name" Clause .. 4-6
Figure 4-10 - The SPECIAL-NAMES "class-name" Clause ... 4-6
Figure 4-11 - The SPECIAL-NAMES "switch-definition" Clause .. 4-7
Figure 4-12 - The SPECIAL-NAMES "symbolic-characters" Clause ... 4-7
Figure 4-13 - INPUT-OUTPUT SECTION Syntax .. 4-8
Figure 4-14 – File SELECT Statement Syntax.. 4-9
Figure 4-15 – FILE STATUS Values .. 4-10
Figure 4-16 - SELECT “organization-options” For SEQUENTIAL Files ... 4-11
Figure 4-17 - SELECT "organization-options" for LINE SEQUENTIAL Files .. 4-12
Figure 4-18 - SELECT “organization options” For RELATIVE Files .. 4-13
Figure 4-19 - SELECT “organization options” For INDEXED Files ... 4-14
Figure 4-20 - I-O-CONTROL Paragraph Syntax ... 4-15
Figure 5-1 - General DATA DIVISION Format ... 5-1
Figure 5-2 - File Description (FD) and Sort Description (SD) Syntax .. 5-2
Figure 5-3- LINAGE-specified Page Structure .. 5-3
Figure 5-4 – Non-SCREEN SECTION Data Item Description Syntax .. 5-6
Figure 5-5 - Data Class-Specification PICTURE Symbols (A/X/9) .. 5-8
Figure 5-6 - Numeric Option PICTURE Symbols (P/S/V) .. 5-9
Figure 5-7 - Numeric Editing PICTURE Symbols ... 5-10
Figure 5-8 - Sign-Encoding Characters ... 5-14
Figure 5-9 - Effect of the SYNCHRONIZED Clause .. 5-15
Figure 5-10 - Summary of USAGE Specifications ... 5-15
Figure 5-11 - SCREEN SECTION Data Item Description Syntax .. 5-20
Figure 5-12 - The GNU COBOL Color Palette (Windows Console) ... 5-21
Figure 5-13 - 01-Level Constant Description Syntax .. 5-26
Figure 5-14 - 66-Level Data Description Syntax ... 5-28
Figure 5-15 - 78-Level Constant Description Syntax .. 5-29
Figure 5-16 - 88-Level Condition Name Syntas .. 5-29
Figure 6-1 - Reference Modifier Syntax ... 6-5
Figure 6-2 – Unary “Minus” (-) Operator Syntax ... 6-6
Figure 6-3 – Unary “Plus” (+) Operator Syntax .. 6-6
Figure 6-4 - Exponentiation Operator (** or ^) Syntax ... 6-6
Figure 6-5 - Multiplication Operator (*) Syntax ... 6-6
Figure 6-6 - Division Operator (/) Syntax ... 6-7
Figure 6-7 - Addition Operator (+) Syntax ... 6-7
Figure 6-8 - Subtraction Operator (-) Syntax ... 6-7
Figure 6-9 - Class Condition Syntax ... 6-9
Figure 6-10 - Sign Condition Syntax ... 6-9
Figure 6-11 - Using Switch Conditions ... 6-10
Figure 6-12 - Relation Condition Syntax .. 6-10
Figure 6-13 - Combined Condition Syntax ... 6-11
Figure 6-14 - Negated Condition Syntax .. 6-11
Figure 6-15 - Special Registers ... 6-20
Figure 6-16 - ROUNDED MODE Behavior .. 6-19
Figure 6-17 - General PROCEDURE DIVISION Syntax ... 6-1
Figure 6-18 - Syntax of a PROCEDURE DIVISION USING Argument ... 6-1
Figure 6-19 - General DECLARATIVES Procedure Syntax ... 6-3
Figure 6-20 - ACCEPT (Read from Console) Syntax .. 6-36
Figure 6-21 - ACCEPT (Command Line Arguments) Syntax.. 6-36
Figure 6-22 - ACCEPT (Environment Variable Values) Syntax ... 6-37
Figure 6-23 - ACCEPT (Retrieve Screen Data) Syntax... 6-38
Figure 6-24 - Screen ACCEPT CRT STATUS Codes .. 6-39
Figure 6-25 - ACCEPT (Retrieve Date/Time) Syntax ... 6-39
Figure 6-26 - ACCEPT Options for DATE/TIME Retrieval ... 6-39
Figure 6-27 - ACCEPT (Retrieve Screen Information) Syntax ... 6-40
Figure 6-28 - ACCEPT (Retrieve Run-Time Information) Syntax .. 6-41
Figure 6-29 - Run-Time Exception Code Values ... 6-41

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version x

Figure 6-30 - ADD (TO) Syntax ... 6-42
Figure 6-31 - ADD (GIVING) Syntax .. 6-42
Figure 6-32 - ADD (CORRESPONDING) Syntax ... 6-43
Figure 6-33 - ALLOCATE Syntax.. 6-44
Figure 6-34 - ALTER Syntax .. 6-45
Figure 6-35 - CALL Syntax .. 6-46
Figure 6-36 - Argument Format When CALLing a Subroutine ... 6-47
Figure 6-37 - CANCEL Syntax ... 6-49
Figure 6-38 - CLOSE Syntax .. 6-50
Figure 6-39 - COMMIT Syntax .. 6-51
Figure 6-40 - COMPUTE Syntax ... 6-52
Figure 6-41 - CONTINUE Syntax ... 6-53
Figure 6-42 - DELETE Syntax .. 6-54
Figure 6-43 - DISPLAY (Upon Console) Syntax ... 6-55
Figure 6-44 - DISPLAY (Access Command-line Arguments) Syntax.. 6-55
Figure 6-45 - DISPLAY (Access / Set Environment Variables) Syntax ... 6-56
Figure 6-46 - DISPLAY (Screen Data) Syntax .. 6-56
Figure 6-47 - DIVIDE INTO Syntax .. 6-58
Figure 6-48 - DIVIDE INTO GIVING Syntax ... 6-58
Figure 6-49 - DIVIDE BY GIVING Syntax ... 6-59
Figure 6-50 - ENTRY Syntax.. 6-60
Figure 6-51 - ENTRY Statement Argument Syntax ... 6-60
Figure 6-52 - EVALUATE Syntax ... 6-61
Figure 6-53 - EXIT Syntax ... 6-63
Figure 6-54 - Using the EXIT Statement ... 6-63
Figure 6-55 - Using EXIT PARAGRAPH .. 6-63
Figure 6-56 - Using the EXIT PERFORM Statement .. 6-64
Figure 6-57 - FREE Syntax .. 6-65
Figure 6-58 - GENERATE Syntax ... 6-66
Figure 6-59 - GOBACK Syntax .. 6-67
Figure 6-60 - Simple GO TO Syntax .. 6-68
Figure 6-61 – GO TO DEPENDING ON Syntax .. 6-68
Figure 6-62 - GOTO DEPENDING ON vs IF vs EVALUATE.. 6-68
Figure 6-63 - IF Syntax ... 6-69
Figure 6-64 - INITIALIZE Syntax .. 6-70
Figure 6-65 - INITIATE Syntax .. 6-73
Figure 6-66 - INSPECT Syntax ... 6-74
Figure 6-67 - An INSPECT TALLYING Example .. 6-75
Figure 6-68 - MERGE Syntax .. 6-78
Figure 6-69 - Simple MOVE Syntax .. 6-80
Figure 6-70 - MOVE CORRESPONDING Syntax .. 6-80
Figure 6-71 - MULTIPLY BY Syntax ... 6-81
Figure 6-72 - MULTIPLY GIVING Syntax ... 6-81
Figure 6-73 - NEXT SENTENCE Syntax .. 6-82
Figure 6-74 - OPEN Syntax ... 6-83
Figure 6-75 - Procedural PERFORM Syntax ... 6-85
Figure 6-76 - Simple PERFORM .. 6-85
Figure 6-77 - PERFORM UNTIL EXIT ... 6-86
Figure 6-78 – PERFORM n TIMES ... 6-86
Figure 6-79 - PERFORM UNTIL ... 6-87
Figure 6-80 - PERFORM VARYING AFTER ... 6-87
Figure 6-81 - Inline PERFORM Syntax .. 6-89
Figure 6-82 – READ (Sequential) Syntax .. 6-90
Figure 6-83 - READ (Random) Syntax .. 6-91
Figure 6-84 - READY TRACE Syntax .. 6-93
Figure 6-85 - RELEASE Syntax .. 6-94
Figure 6-86 - RESET TRACE Syntax ... 6-95

file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329853974
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329853999
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329854000
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329854001
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329854002
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329854003

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version xi

Figure 6-87 - RETURN Syntax ... 6-96
Figure 6-88 - REWRITE Syntax ... 6-97
Figure 6-89 - ROLLBACK Syntax ... 6-98
Figure 6-90 - Sequential SEARCH Syntax ... 6-99
Figure 6-91 - Binary SEARCH (ALL) Syntax ... 6-100
Figure 6-92 - SET ENVIRONMENT Syntax... 6-102
Figure 6-93 - SET Program Pointer Syntax ... 6-102
Figure 6-94 - SET ADDRESS Syntax... 6-103
Figure 6-95 - SET Index Syntax ... 6-103
Figure 6-96 - SET UP/DOWN Syntax .. 6-103
Figure 6-97 - SET Condition Name Syntax ... 6-104
Figure 6-98 - SET Switch Syntax ... 6-104
Figure 6-99 - SET ATTRIBUTE Syntax .. 6-104
Figure 6-100 - File-Based SORT Syntax .. 6-105
Figure 6-101 - Table SORT Syntax .. 6-107
Figure 6-102 - START Syntax .. 6-108
Figure 6-103 - STOP Syntax .. 6-109
Figure 6-104 - STRING Syntax .. 6-110
Figure 6-105 - SUBTRACT FROM Syntax .. 6-111
Figure 6-106 - SUBTRACT GIVING Syntax .. 6-111
Figure 6-107 - SUBTRACT CORRESPONDING Syntax .. 6-112
Figure 6-108 - SUPPRESS Syntax .. 6-113
Figure 6-109 - TERMINATE Syntax ... 6-114
Figure 6-110 - TRANSFORM Syntax ... 6-115
Figure 6-111 - UNLOCK Syntax .. 6-116
Figure 6-112 - UNSTRING Syntax ... 6-117
Figure 6-113 - WRITE Syntax ... 6-119
Figure 7-1 - C/GNU COBOL Data Type Matches .. 7-11
Figure 7-2 - GNU COBOL CALLing C ... 7-12
Figure 7-3 - C CALLing GNU COBOL ... 7-13
Figure 8-1 - Compiler Environment Variables ... 8-4
Figure 8-2 - Run-Time Environment Variables ... 8-9
Figure 8-3 - A Binary Truncation Demo Program .. 8-26
Figure 8-4 - A Non-Scientific Comparison of Numeric Data Item USAGE Performance .. 8-28

GNU COBOL 2.0 Programmers Guide Table of Contents

11FEB2012 Version xii

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-1

1. Introduction

1.1. What is GNU COBOL?

This document describes the syntax, semantics and usage of the COBOL programming language as implemented by
the current version of GNU COBOL, formerly known as OpenCOBOL.

GNU COBOL is an open-source COBOL compiler and runtime environment. The GNU COBOL compiler generates C
code which is automatically compiled and linked. While originally developed for UNIX operating systems, GNU COBOL
has also been successfully built for OSX computers or Windows computers utilizing the UNIX-emulation features of
such tools as Cygwin and MinGW

1
. It has also been built as a truly native Windows application utilizing Microsoft’s

freely-downloadable Visual Studio Express package to provide the C compiler and linker/loader.

The principal developers of GNU COBOL are Keisuke Nishida and Roger While. They may be contacted at the GNU
COBOL website - www.GNU COBOL.org.

This document was intended to serve as a full-function reference and user’s guide suitable for both those readers
learning COBOL for the first time as well as those already familiar with some dialect of the COBOL language. The
author of this document is Gary Cutler, who may be reached via postings at the www.GNU COBOL.org forum, or by
email at CutlerGL@gmail.com.

1.2. Additional References and Documents

For those wishing to learn COBOL for the first time, I can strongly recommend the following resources.

If you like to hold a book in your hands, I strongly recommend “Murach’s Structured COBOL”, by Mike Murach, Anne
Prince and Raul Menendez (2000) - ISBN 9781890774059. Mike Murach and his various writing partners have been
writing outstanding COBOL textbooks for decades, and this text is no exception. It’s an excellent book for those
familiar with the concepts of programming in other languages, but unfamiliar with COBOL.

Would you prefer a web-based tutorial? Try the University of Limerick (Ireland) COBOL web site -
http://www.csis.ul.ie/cobol/.

1.3. Introducing COBOL

If you already know a programming language, and that language isn’t COBOL, chances are that language is Java, C or
C++. You will find COBOL a much different programming language than those – sometimes those differences are a
good thing and sometimes they aren’t. The thing to remember about COBOL is this – it was designed to solve business
problems. It was designed to do that in the 1950s.

COBOL was the first programming language to become standardized such that a COBOL program written on computer
“A” made by company “X” would be able to be compiled and executed on computer “B” made by company “Y”. This
may not seem like such a big deal today, but it was a radical departure from all programming languages that came
before it and even many that came after it.

The name “COBOL” actually says it all – COBOL is an acronym that stands for “COmmon Business Oriented Language”.
Note the fact that the word “common” comes before all others. The word “business” is a close second. Therein lies
the key to COBOL’s success.

1.3.1. “I Heard COBOL is a Dead Language!”

Phoenician is a dead language. Mohegan is a dead language. Sanskrit is a dead language. What makes these
languages dead is the fact that no one speaks them anymore. COBOL is NOT a dead language, and despite
pontifications that come down to us from the ivory towers of academia, it isn’t even on life support.

1
 The MinGW approach is a personal favorite with the author of this manual because it creates a GNU COBOL compiler and

runtime that require only a single MinGW DLL to be available to GNU COBOL tools and user programs. That DLL is freely
distributable under the terms of the GNU General Public License. A MinGW build of GNU COBOL fits easily on and runs from a
128MB flash drive with no need to install any software onto the Windows computer that will be using it. Some functionality of
the language, dealing with the sharing of files between concurrently executing GNU COBOL programs and record locking on
certain types of files, is sacrificed however as the underlying operating system routines needed to implement them aren’t
available to Windows.

file:///C:/Documents%20and%20Settings/tda010/Application%20Data/Microsoft/Word/www.opencobol.org
http://www.opencobol.org/
mailto:CutlerGL@gmail.com
http://www.csis.ul.ie/cobol/

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-2

What made those other languages die is the fact that they became both obsolete and irrelevant. As the peoples that
spoke them were overrun or superseded by other populations that eventually replaced them, no one saw any need to
speak their languages.

 COBOL is different. Certainly, there were more people that “spoke” COBOL back in the 1980s than there are now.
Remember, however, the second word in COBOL’s acronym – business. Businesses are complex social and economic
organisms that exist for but a single purpose – to make money. One of the approaches businesses take to satisfy that
all-important survival trait is the avoidance of unnecessary expenses.

This avoidance of expense turns out to have been key to the survival of COBOL because those programmers of the
1980s (give or take a decade) were very busy programmers. Estimates are that as many as several hundred billion
lines of COBOL code were written for businesses world-wide. Because of the first word in COBOL’s name (“Common”),
as businesses replaced their older, slower and less-reliable computer systems with newer, faster and more-reliable
ones, they found that the massive investment they had in their COBOL software inventory paid dividends by remaining
functional on those new systems - many times with no changes needed whatsoever!

Unwilling to endorse change merely for the sake of change, businesses replaced COBOL code only when absolutely
necessary and only when financially justifiable. That justification appeared to have come as the 20

th
 century was

nearing the end.

Written long before the end of the century was near, many COBOL applications used 2-digit years instead of four digit
years because, when the programs were written, computer storage of any kind was expensive. Why should millions
and millions of bytes of storage be wasted by all those “19” sequences when the software can just simply assume
them? Since their software would suddenly think the current year was “1900” after the stroke of midnight, December
31

st
 1999, businesses knew they were going to have to do something about the “Y2K” (programmer “geek speak” for

“Year 2000”) problem.

At last! Y2K was going to be the massive asteroid strike that finally killed off the COBOL dinosaur.

Unfortunately for those seeking the extinction of COBOL, that proved to be wishful thinking.

Always concerned with the bottom line, businesses actually analyzed the problems with their programs. Many
applications were replaced with newer and “better” versions that used more appropriate (translation: more politically
correct) languages and computer systems. BUT … many applications were not replaced. These were the absolutely
essential applications whose replacement would cripple the business if everything didn’t go absolutely perfectly.
These COBOL applications were modified to use 4-digit years instead of 2-digit ones. At the same time, many of them
received cosmetic “face lifts” to make their computer/human interfaces more acceptable, frequently with the help of
modules developed in the newer languages.

The result is that even today, after the Y2K “extinction event”, there are, by some industry estimates, over 220 billion
lines of COBOL code still running the businesses of the 21

st
 century. A fact that is disturbing to some is that – just as

tiny little furry mammals evolved to cope with the original “extinction event” holocaust – COBOL has also evolved into
a leaner and meaner “animal” capable of competing in niches and providing services unthought-of back in 1968. That
fact is confirmed by the fact that those lines of COBOL code being tracked by industry analysts are actually growing at
the rate of about 4 billion a year.

Evolution, you see, is in COBOLs DNA. Over time, COBOL evolved in form and function, first via work done by the
American National Standards Institute (ANSI) and eventually through the efforts of the International Standards
Organization (ISO).

The first widely-adopted standard for COBOL was published by ANSI in 1968
2
. Named the ANS68 standard, this

version of COBOL was originally standardized for use primarily as the business programming tool of the US Defense
Department; it quickly was adopted by other Government agencies and private businesses alike.

Subsequent standards published in 1974 and 1985 (ANS74 and ANS85, respectively) added new features and evolved
the language toward adoption of the programmer-productivity tool of the time – “Structured Programming”.

2
 To that point, in 1968 the US Government made it a requirement that any computer system sold to them must run a version of

COBOL that adhered to the ANSI68 standard. The requirement that computers sold to the US Government had to support the
current COBOL standard remained for many, many years.

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-3

As the 21
st

 century dawned, programming had moved out of the board room and into the Game Room, the Living
Room and even the Kitchen. As computers became more and more inexpensive they appeared in games,
entertainment devices and appliances. Even the automobile became home to computers galore. These computers
need software, and that software is written in the so-called “modern” languages.

Combined with Y2K, these trends became the impetus for COBOL to evolve even newer features and capabilities. The
COBOL2002 standard

3
 introduced object-oriented features and syntax that make the language more programmer-

friendly to those trained by today’s programming curricula. The COBOL20xx standard, currently under development,
carries the evolution forward to the point where a COBOL20xx implementation will be fully as “modern” as any other
programming language.

Through all this evolution, however, care was taken with each new standard to protect the investment businesses (or
anyone, for that matter) had in COBOL software. Generally, a new COBOL standard – once implemented and adopted
by a business - required minimal, if any, changes to existing applications. When changes were necessary, those
changes could frequently be made using tools that mechanically upgraded entire libraries of source code with little or
no need for human intervention.

The GNU COBOL implementation of the COBOL language supports virtually the entire ANS85 standard as well as some
significant features of the COBOL2002 standard, although the truly object-oriented features are not there (yet).

1.3.2. Programmer Productivity – The “Holy Grail”

Throughout the history of computer programming, the search for new ways to improve of the productivity of
programmers has been the all-important consideration. Sometimes this search has taken the form of introducing new
features in programming languages, or even new languages altogether. Sometimes it has evolved new ways of using
the existing languages. Other than hobbyists, programming is an activity performed for money. Businesses abhor
spending anything more than is absolutely necessary. Even government agencies try to spend as little money on
projects as is absolutely necessary

4
.

The amount of programming necessary to accomplish a given task – including rework needed by any errors found
during testing (testing: “that time during which an application is actually in production use attempting to serve the
purpose for which it was designed”) is the measure of programmer productivity. Anything that reduces that effort
will therefore reduce the time spent in such activities therefore reducing the expense of same. When the expense of
programming is reduced, programmer productivity is increased.

While many technological and procedural developments have made evolutionary improvements to programmer
productivity, each of the following has been responsible for revolutionary improvements:

 The development of so-called “higher-level” programming languages that enable a programmer to specify in
a single statement of the language an action that would have required many more separate statements in a
prior programming language. The standardization of such languages, making them usable on a wide variety
of computers and operating systems, was a key aspect of this development. COBOL was a pioneering
development in this area, being one of the first higher-level languages and the first to become standardized.

 The establishment of programming techniques that make programs easier to read and therefore easier to
understand. Not only do such techniques reduce the amount of rework necessary simply to make a program
work as designed, but they also reduce the amount of time a programmer needs to study an existing program
in order how to best adapt it to changing business requirements. The foremost development in this area was
structured programming. Introduced in the late 1970s, this approach to programming spawned new
programming languages (PASCAL, ALGOL, PL/1) designed around it. With the ANSI85 standard, COBOL
embraced the principles espoused by structured programming mavens as well as any of the languages
designed strictly around it.

 The establishment of programming techniques AND the introduction of programming language capabilities to
facilitate the reusability of program code. Anything that supports code reusability can have a profound

3
 “Popular” names for COBOL standards no longer include an organization’s name, and now use Y2K-compliant 4-digit years.

4
 This is a religious issue because it is an assertion that – sadly – must be taken purely on faith; there is, unfortunately, all too

little real-world evidence to support it. It makes sense though, so one can only hope it is true.

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-4

impact to the amount of time it takes to develop new applications or to make significant changes to existing
ones. In recent years, object-oriented programming has been the industry “poster child” for code reusability.
By enabling program logic and the data structures that logic manipulates to be encapsulated into easily
stored and retrieved (and therefore “reusable”) modules called classes, the object-oriented languages such as
Java, C++ and C# have become the favorites of academia. Since students are being trained in these
technologies and only these, by and large, it’s no surprise that – today - object-oriented programming
languages are the darlings of the industry.

The reality is, however, that good programmers have been practicing code reusability for more than a half-
century. Up until recently, COBOL programmers have had some of the best code reusability tools available -
they’ve been doing it with copybooks and subprograms rather than classes, methods and attributes but the
net results have been similar. With the COBOL2002 standard and the improvements made by the COBOL20xx
standard, the playing field is rapidly becoming leveled in this regard.

1.3.3. Notable COBOL/GNU COBOL Features

1.3.3.1. Basic Program Readability

The most vociferous critics of COBOL always focus on the wordiness of the language, often citing the case of an
infamous “Hello World” program as the “proof” that COBOL is so much more tedious to program in than more
“modern” languages. This tedium is cited as such a significant impact to programmer productivity that – in their
minds – the critics believe that COBOL can’t go away quickly enough for them.

Here are two different “Hello World” applications – one written in Java and the second in COBOL2002:

Java “Hello World” COBOL2002 “Hello World” (Free-form Mode)
5

Class HelloWorld {

 public static void main(String[] args) {

 System.out.println(“Hello World!”);

 }

}

identification division.

program-id. HelloWorld.

procedure division.

 display “Hello World!”.

Both programs could have been written on a single line, if desired, and both languages allow a programmer to use (or
not use) indentation as they see fit to improve program readability. Sounds like a tie so far.

Let’s look at how much more “wordy” COBOL is than Java. Count the characters in the two programs. The Java
program has 95 (not counting carriage returns and any indentation). The COBOL program has 89 (again, not counting
carriage returns and indentation)! Technically, it could have been only 65 because the “identification division.” header
is actually optional.

Clearly, “Hello World” doesn’t look any better in Java than it does in COBOL.

Let’s look at a different problem. Surely a program that asks a user to input a positive integer, generates the sum of all
positive integers from 1 to that number and then prints the result will be MUCH easier to code in Java than in COBOL,
right?

5
 One of the features of the COBOL2002 standard is its ability to allow programs to be coded in free-form mode, where line

breaks and indentation are pretty much left to the discretion of the programmer. It wasn’t always this way, and the pre-2002
standards for COBOL are quite rigid when it comes to that sort of thing. Maybe the COBOL critics

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-5

You can be the judge.

Java Sum of Integers COBOL2002 Sum of Integers (Free-form Mode)
6

import java.util.Scanner;

public class sumofintegers {

 public static void main(String[] arg) {

 System.out.println(“Enter a positive integer”);

 Scanner scan=new Scanner(System.in);

 int n=scan.nextInt();

 int sum=0;

 for (int i=1;i<=n;i++) {

 sum=sum+i;

 }

 System.out.println(“The sum is “+sum);

 }

}

identification division.

program-id. sumofintegers.

data division.

working-storage section.

01 n binary-int.

01 i binary-int.

01 sum binary-int.

procedure division.

display “Enter a positive integer”

accept n

perform varying i from 1 by 1 until i>n

 add i to sum

end-perform

display “The sum is “ sum.

My familiarity with COBOL may be prejudicing my opinion, but it doesn’t appear to me that the Java code is any
simpler than the COBOL code. In case you’re interested in character counts, the Java code comes in at 281 (not
counting indentation characters). The COBOL code is 287 (263 without the “identification division.” header).

The more complex the programming logic being implemented, the more concise the Java code will appear to be, even
compared to 2002-standard COBOL. That conciseness comes with a price though – program code readability. Java (or
C or C++ or C#) programs are generally intelligible only to trained programmers. COBOL programs can be quite
intelligible to non-programmers, however. This is actually a side-effect of the wordiness of the language, where
COBOL statements use natural English words to describe their actions. This inherent readability has come in handy
many times throughout my career when I’ve had to learn obscure business (or legal) processes by reading COBOL
program code that supports them.

The “modern” languages, like COBOL, also have their own “boilerplate” infrastructure overhead that must be coded in
order to write the logic that is necessary in the program. Take for example the “public static void

main(String[] arg) {“ and “import java.util.Scanner;” statements. The critics tend to forget

about this when they criticize COBOL for it’s structural “overhead.”

When it first was developed, COBOL’s easily-readable syntax made it profoundly different from anything that had
been seen before. For the first time, it was possible to specify logic in a manner that was – at least to some extent –
comprehensible even to non-programmers. Take for example, the following code written in FORTRAN – a language
developed only a year before COBOL:

E = P * Q
I = I + E

With its original limitation on the length of variable names (one letter or a letter followed by a number), and its use of
algebraic notation to express actions being taken, FORTRAN wasn’t a particularly readable language, even by
programmers. Compare this with the equivalent COBOL code:

MULTIPLY PRICE BY QUANTITY GIVING EXTENDED-AMOUNT
ADD EXTENDED-AMOUNT TO INVOICE-TOTAL

Clearly, even a non-programmer could at least conceptually understand what was going on! Over time, languages like
FORTRAN evolved more robust variable names, and COBOL introduced a more formula-based syntactical capability for
arithmetic operations, but FORTRAN was never as readable as COBOL.

Because of its inherent readability, I would MUCH rather be handed an assignment to make significant changes to a
COBOL program about which I know nothing than to be asked to do the same with a C, C++, C# or Java program.

Those that argue that it is too boring/wasteful/time-consuming/insulting (pick one) to have to code a COBOL program
“from scratch” are clearly ignorant of the following facts:

6
 One of the features of the COBOL2002 standard is its ability to allow programs to be coded in free-form mode, where line

breaks and indentation are pretty much left to the discretion of the programmer. It wasn’t always this way, and the pre-2002
standards for COBOL are quite rigid when it comes to that sort of thing. Maybe the COBOL critics

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-6

 Many systems have program-development tools available to ease the task of coding programs; those tools
that concentrate on COBOL are capable of providing templates for much of the “overhead” verbiage of any
program…

 Good programmers have – for decades – maintained their own skeleton “template” programs for a variety of
program types; simply load a template into a text editor and you’ve got a good start to the program…

 Legend has it that there’s actually only been ONE program ever written in COBOL – all programs ever
“written” thereafter were simply derivatives of that one!

1.3.3.2. COBOL Program Structure

COBOL programs are structured into four major areas of coding, each with its own purpose. These four areas are
known as DIVISIONS.

Each DIVISION may consist of a variety of SECTIONs and each SECTION consists of one or more PARAGRAPHs. A
PARARAPH consists of SENTENCEs, each of which consists of one or more STATEMENTs.

This hierarchical structure of program components standardizes the composition of all COBOL programs. Much of this
manual describes the various divisions, sections, paragraphs and statements that may comprise any COBOL program.

See Also…

The Four Divisions of a Program 1.5

The IDENTIFICATION DIVISION 3

The ENVIRONMENT DIVISION 4

The DATA DIVISION 5

The PROCEDURE DIVISION 6

1.3.3.3. Copybooks

A “copybook” is a segment of program code that may be utilized by multiple programs simply by having that program
use the COPY statement to import that code into the program. This code may define files, data structures or
procedural code.

Today’s current programming languages have a statement (usually, this statement is named “import”, “include” or
“#include”) that performs this same function. What makes the COBOL copybook feature different than the “include”
facility in current languages, however, is the fact that the COBOL COPY statement can edit the imported source code
as it is being copied. This capability makes copybook libraries extremely valuable to making code reusable.

See Also…

The COPY Statement 2.1.1

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-7

1.3.3.4. Structured Data

COBOL introduced the concept of structured data back in the 1960s. Structured data is data which may be accessed
as a single item or may be broken down into sub-items based upon their character position of occurrence within the
structure. These structures called group items. At the bottom of any structure are data items that aren’t broken
down into sub-items. COBOL refers to these as elementary items.

1.3.3.5. Files

One of COBOLs main strengths is the wide variety of files it is capable of accessing. GNU COBOL programs, like those
created with other COBOL implementations, need to have the structure of any files they will be reading and/or writing
described to them. The highest-level characteristic of a file’s structure is defined by specifying the ORGANIZATION
(section) of the file, as follows:

ORGANIZATION IS
LINE SEQUENTIAL

These are files with the simplest of all internal structures. Their contents are structured simply
as a series of data records, each terminated by a special end-of-record delimiter character. An
ASCII line-feed character (hexadecimal 0A) is the end-of-record delimiter character used by
any UNIX or pseudo-UNIX (MinGW, Cygwin, OSX) GNU COBOL build. A truly native Windows
build would use a carriage-return, line-feed (hexadecimal 0D0A) sequence.

Records in this type of file need not be the same length.

Records must be read from or written to these files in a purely sequential manner. The only
way to read (or write) record number 100 would be to have read (or written) records number
1 thru 99 first.

When the file is written by a GNU COBOL program, the delimiter sequence will be
automatically added to each data record as it is written to the file. WRITEs to this type of file
will be done using an implied “BEFORE ADVANCING 1 LINE” clause in the absence of an
explicitly-specified ADVANCING clause.

When the file is read, the GNU COBOL runtime system will strip the trailing delimiter sequence
from each record and pad the data (to the right) with SPACES if the data just read is shorter
than the area described for data records in the program. If the data is too long, it will be
truncated and the excess will be lost.

These files should not be defined to contain any exact binary data fields because the contents
of those fields could inadvertently have the end-of-record sequence as part of their values –
this would confuse the runtime system when reading the file, and it would interpret that value
as an actual end-of-record sequence.

LINE ADVANCING
files

These are files with an internal structure similar to that of the LINE SEQUENTIAL file. These
files are defined (without an explicit ORGANIZATION specification) using the LINE ADVANCING
clause on their SELECT statement.

When this kind of file is written by a GNU COBOL program, the delimiter sequence will be
automatically added to each data record as it is written to the file. WRITEs to this type of file
will be done using an implied “AFTER ADVANCING 1 LINE” clause in the absence of an
explicitly-specified ADVANCING clause.

Like ORGANIZATION LINE SEQUENTIAL files, these files should not be defined to contain any
exact binary data fields because the contents of those fields could inadvertently have the end-
of-record sequence as part of their values – this would confuse the runtime system when
reading the file, and it would interpret that value as an actual end-of-record sequence.

ORGANIZATION IS
RECORD BINARY
SEQUENTIAL

These files also have a simple internal structure. Their contents are structured simply as an
arbitrarily-long sequence of data characters. This sequence of data characters will be treated
as a series of fixed-length data records simply by logically splitting the sequence of data
characters up into a series of fixed-length segments each as long as the maximum record size
defined in the program. There are no special end-of-record delimiter characters in the file and

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-8

when the file is written to by a GNU COBOL program, no delimiter sequence is appended to
the data.

Records in this type of file are all the same physical length, except possibly for the very last
record in the file, which may be shorter than the others. If variable-length logical records are
defined to the program, the space occupied by each physical record in the file will occupy the
maximum possible space.

So, if a file contains 1275 characters of data, and a program defines the structure of that file as
containing 100-character records, then the file contents will consist of twelve (12) 100-
character records with a final record containing only 75 characters.

Even though it appears that it should be possible to locate and process any record in the file
directly simply by calculating its starting character position based upon the program-defined
record size, records must be still be read or written to these files in a purely sequential
manner. The only way to read (or write) record number 100 would be to have read (or
written) records number 1 thru 99 first.

When the file is read, the data is transferred into the program exactly as it exists in the file. In
the event that a short record is read as the very last record, that record will be SPACE padded.

Care must be taken that programs reading such a file describe records whose length is exactly
the same as that used by the programs that created the file. For example, the following shows
the contents of a RECORD BINARY SEQUENTIAL file created by a program that wrote five 6-
character records to it. The “A”, “B”, … values and the background colors reflect the records
that were written to the file:

A A A A A A B B B B B B C C C C C C D D D D D D E E E E E E

Now, assume that another program reads this file, but described 10-character records rather
than 6. Here are the records that program will read:

A A A A A A B B B B
B B C C C C C C D D
D D D D E E E E E E

There may be times where this is exactly what you were looking for. More often than not,
however, this is not desirable behavior. Suggestion: use a copybook to describe the record
layouts of any file; this guarantees that multiple programs accessing that file will “see” the
same record sizes and layouts.

These files can contain exact binary data fields because the contents of record fields are
irrelevant to the reading process as there is no end-of-record delimiter.

ORGANIZATION IS
RELATIVE

The contents of these files consist of a series of fixed-length data records prefixed with a four-
byte record header. The record header contains the length of the data, in bytes. The byte-
count does not include the four-byte record header.

Records in this type of file are all the same physical length. If variable-length logical records
are defined to the program, the space occupied by each physical record in the file will occupy
the maximum possible space.

This file organization was defined to accommodate either sequential or random processing.
With a RELATIVE file, it is possible to read or write record 100 directly, without having to have
first read or written records 1-99. The GNU COBOL runtime system uses the program-defined
maximum record size to calculate a relative byte position in the file where the record header
and data begin, and then transfers the necessary data to or from the program.

When the file is written by a GNU COBOL program, no delimiter sequence is appended to the
data, but a record-length field is added to the beginning of each physical record.

When the file is read, the data is transferred into the program exactly as it exists in the file.

Care must be taken that programs reading such a file describe records whose length is exactly
the same as that used by the programs that created the file. It won’t be a pretty site when the

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-9

GNU COBOL runtime library ends up interpreting a four-byte ASCII character string as a record
length when it transfers data from the file into the program!

Suggestion: use a copybook to describe the record layouts of any file; this guarantees that
multiple programs accessing that file will “see” the same record sizes and layouts.

These files can contain exact binary data fields. The contents of record fields are irrelevant to
the reading process as there is no end-of-record delimiter.

ORGANIZATION IS
INDEXED

This is the most advanced file structure available to GNU COBOL programs. It’s not possible to
describe the physical structure of such files because that structure will vary depending upon
which advanced file-management facility was included into the GNU COBOL build you will be
using (Berkeley Database [BDB], VBISAM, etc.). We will – instead – discuss the logical
structure of the file.

There will be multiple structures stored for an INDEXED file. The first will be a data
component, which may be thought of as being similar to the internal structure of a RELATIVE
file. Data records may not, however, be directly accessed by their record number as would be
the case with a RELATIVE file, nor may they be processed sequentially by their physical
sequence in the file.

The remaining structures will be one or more index components. An index component is a
data structure that (somehow) enables the contents of a field, called a primary key, within
each data record (a customer number, an employee number, a product code, a name, etc.) to
be converted to a record number so that the data record for any given primary key value can
be directly read, written and/or deleted. Additionally, the index data structure is defined in
such a manner as to allow the file to be processed sequentially, record-by-record, in ascending
sequence of the primary key field values. Whether this index structure exists as a binary-
searchable tree structure (btree), an elaborate hash structure or something else is pretty much
irrelevant to the programmer – the behavior of the structure will be as it was just described.
The runtime system will not allow two records to be written to an indexed file with the same
primary key value.

The capability exists for an additional field to be defined as what is known as an alternate key.
Alternate key fields behave just like primary keys, allowing both direct and sequential access
to record data based upon the alternate key field values, with one exception. That exception
is the fact that alternate keys may be allowed to have duplicate values, depending upon how
the alternate key field is described to the GNU COBOL compiler.

There may be any number of alternate keys, but each key field comes with a disk space
penalty as well as an execution time penalty. As the number of alternate key fields increases,
it will take longer and longer to write and/or modify records in the file.

These files can contain exact binary data fields. The contents of record fields are irrelevant to
the reading process as there is no end-of-record delimiter.

All files are initially described to a GNU COBOL program using a SELECT statement coded in the FILE-CONTROL
paragraph of the INPUT-OUTPUT SECTION of the ENVIRONMENT DIVISION. In addition to defining a name by which
the file will be referenced within the program, the SELECT statement will specify the name and path by which the file
will be known to the operating system along with its ORGANIZATION, locking and sharing attributes.

A file description in the FILE SECTION of the DATA DIVISION will define the structure of records within the file,
including whether or not variable-length records are possible and – if so – what the minimum and maximum length
might be. In addition, the file description entry can specify file I/O block sizes.

See Also…

Defining the Characteristics of a File 4.2.1

Describing the Structure of a File (FD/SD) 5.1

File Sharing 6.1.9.1

Record Locking 6.1.9.2

1.3.3.6. Table Handling

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-10

Other programming languages have arrays, COBOL has tables. They’re basically the same thing. What makes COBOL
tables special are two special statements that exist in the COBOL language – SEARCH and SEARCH ALL.

The first can search a table sequentially, stopping only when either a table entry matching one of any number of
search conditions is found, or when all table entries have been checked against the search criteria and none matched
any of those criteria.

The second can perform an extremely fast search against a table sorted by and searched against a “key” field
contained in each table entry. The algorithm used for such a search is a binary search (also known as a half-interval
search). This algorithm ensures that only a small number of entries in the table need to be checked in order to find a
desired entry or to determine that the desired entry doesn’t exist in the table. The larger the table, the more effective
this search becomes. For example, a table containing 32,768 entries will be able to locate a particular entry or will
determine the entry doesn’t exist by looking at no more than fifteen (15) entries! The algorithm is explained in detail
in the SEARCH ALL documentation.

See Also…

Defining Tables 0

The SEARCH Statement 6.4.38.1

The SEARCH ALL Statement 6.4.38.2

1.3.3.7. Sorting and Merging Data

The COBOL language includes a powerful SORT statement that can sort large amounts of data according to arbitrarily
complex key structures. This data may originate from within the program or may be contained in one or more
external files. The sorted data may be written automatically to one or more output files or may be processed, record-
by-record in the sorted sequence.

A special form of the SORT statement also exists just to sort the data that resides in a table. This is particularly useful
if you wish to use SEARCH ALL against the table.

A companion statement – MERGE– can combine the contents of multiple files together, provided those files are all
sorted in a similar manner according to the same key structure(s). The resulting output will consist of the contents of
all of the input files, merged together and sequenced according to the common key structure(s). The output of a
MERGE may be written automatically to one or more output files or may be processed internally by the program.

See Also…

The MERGE Statement 6.4.25

The SORT Statement (File Sort) 6.4.40.1

The SORT Statement (Table Sort) 6.4.40.2

1.3.3.8. String Manipulation

There have been programming languages designed specifically for the processing of text strings, and there have been
programming languages designed for the sole purpose of performing high-powered numerical computations. Most
programming languages fall somewhere in the middle, between these two extremes. COBOL is no exception,
although it does include some very powerful string manipulation capabilities; GNU COBOL actually has even more
string-manipulation capabilities than many other COBOL implementations.

See Also…

Concatenate Two Or More Strings CONCATENATE Intrinsic Function 6.1.7.9

STRING Statement 6.4.43

Conversion Of A Numeric Time Or Date
To A Formatted Character String

LOCALE-TIME Intrinsic Function 6.1.7.35

LOCALE-DATE Intrinsic Function 6.1.7.32

Convert A Binary Value To Its
Corresponding Character In The

Program’s Characterset

CHAR Intrinsic Function; add 1 to argument before invoking
the function; The description of the CHAR function shows a
technique that utilizes the MOVE statement that will
accomplish the same thing without the need of adding 1 to
the numeric argument value first

6.1.7.7

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-11

Convert A Character String To Lower-Case LOWER-CASE Intrinsic Function 6.1.7.39

C$TOLOWER Built-in Subroutine 8.3.1.13

CBL_TOLOWER Built-in Subroutine 8.3.1.40

Convert A Character String To Upper-
Case

UPPER-CASE Intrinsic Function 6.1.7.87

C$TOUPPER Built-in Subroutine 8.3.1.14

CBL_TOUPPER Built-in Subroutine 8.3.1.41

Convert A Character String To Only
Printable Characters, Changing Any Non-
Printable Characters To A Default (“.”) Or

Programmer-Specified Replacement
Character.

C$PRINTABLE Built-in Subroutine 8.3.1.11

Convert A Character To Its Numeric Value
In The Program’s Characterset

ORD Intrinsic Function; subtract 1 from the result; The
description of the ORD function shows a technique that
utilizes the MOVE statement that will accomplish the same
thing without the need of adding 1 to the numeric argument
value first

6.1.7

Count Occurrences Of Substrings In A
Larger String

INSPECT Statement with TALLYING Option 6.4.24

Decode A Formatted Numeric String Back
To A Numeric Value (For Example,

Decode “$12,342.19-“ To A -12342.19
Value)

NUMVAL Intrinsic Function 6.1.7.54

NUMVAL-C Intrinsic Function (handles currency-formatted
strings)

6.1.7.59

Determine The Length Of A String Or
Data-Item Capable Of Storing Strings

LENGTH Intrinsic Function 6.1.7.31

BYTE-LENGTH Intrinsic Function 6.1.7.6

Extract A Substring Of A String Based On
Its Starting Character Position And Length

Use of a reference modifier on the string field. 6.1.3

Format A Numeric Item For Output,
Including Thousands-Separators (“,” In

The USA), Currency Symbols (“$” In The
USA), Decimal Points, Credit/Debit

Symbols, Leading Or Trailing Sign
Characters

MOVE Statement with picture-symbol editing applied to the
receiving field

5.3 and
6.4.26

Justification (Left, Right Or Centered) Of
A String Field

C$JUSTIFY built-in subroutine 8.3.1.6

Monoalphabetic Substitution Of One Or
More Characters In A String With

Different Characters

INSPECT Statement with CONVERTING Option 6.4.24

TRANSFORM Statement 6.4.47

SUBSTITUTE Intrinsic Function 6.1.7.77

SUBSTITUTE-CASE Intrinsic Function 6.1.7.78

Parse A String, Breaking It Up Into
Substrings Based Upon One Or More

Delimiting Character Sequences; These
Delimiters May Be Single Characters,

Multiple-Character Strings Or Multiple
Consecutive Occurrences Of Either

UNSTRING Statement 6.4.49

Removal Of Leading Or Trailing Spaces
From A String

TRIM Intrinsic Function 6.1.7.83

Substitution Of A Single Substring With
Another Of The Same Length, Based

Upon The Substrings Starting Character

MOVE Statement with a reference modifier on the
“receiving” field

6.1.3
and
6.4.26.1

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-12

Position And Length

Substitution Of One Or More Substrings
In A String With Replacement Substrings

Of The Same Length, Regardless Of
Where They Occur

INSPECT Statement with REPLACING Option 6.4.24

SUBSTITUTE Intrinsic Function 6.1.7.77

SUBSTITUTE-CASE Intrinsic Function 6.1.7.78

Substitution Of One Or More Substrings
In A String With Replacement Substrings

Of A Potentially Different Length,
Regardless Of Where They Occur

SUBSTITUTE Intrinsic Function 6.1.7.77

SUBSTITUTE-CASE Intrinsic Function 6.1.7.78

1.3.3.9. Textual-User Interface (TUI) Features

The COBOL2002 standard formalizes extensions to the COBOL language that allow for the definition and processing of
text-based screens, as is a typical function on mainframe computers. GNU COBOL implements virtually all the screen-
handling features described by COBOL2002. Here is an example of such a screen as it might appear in the console
window of a Windows computer:

Figure 1-1 - A Sample TUI Screen

Screens such as this
7
 are defined in the SCREEN SECTION of the DATA DIVISION. Once defined, screens are used at

run-time via the ACCEPT and DISPLAY statements.

The COBOL2002 standard only covers textual-user interface (TUI) screens and not the more-advanced graphical-user
interface (GUI) screen design and processing capabilities built into most modern operating systems. There are
subroutine-based packages available that can do full GUI development, but none are open-source.

See Also…

Defining Screens 5.6

The ACCEPT Statement (Screen Data) 6.4.1.4

The DISPLAY Statement (Screen Data) 6.4.12.4

7
 This screen comes from the program named GCic – a full-screen front-end to the GNU COBOL compiler – the source code of

which is included as a sample in this manual. See section 10.4 for the listing of the program.

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-2

1.4. Syntax Description Conventions

Syntax of the GNU COBOL language will be described in this manual with conventions familiar to COBOL programmers,
with a few coloring conventions throuwn in to aid in readability and interpretation. The following is a description of
those syntactical-description techniques:

Black Syntactical elements that are part of the GNU COBOL language (including required
punctuation symbols, operators and so on) will appear in black. Other colors such as red
and blue will be used to highlight those elements that are merely part of the syntax
description.

UPPERCASE COBOL language keywords and implementation-dependent names (the so-called “reserved
words” of the COBOL language) will appear in BOLD UPPERCASE.

UNDERLINING reserved words that are UNDERLINED are required in whatever syntactical context they are
shown. If a reserved word is not underlined, it is optional and its presence or absence has
no effect on the program.

lowercase-italic Generic terms representing substitutable items will be shown in italic lowercase.

[optional-syntax] Red Square brackets are used to enclose optional syntax. Any clauses not enclosed in
square brackets are mandatory. These are also used sometimes in conjunction with the
ellipsis (…) to indicate an optional syntactical item that could be repeated.

choice-1 | choice-2 Simple choices may be indicated with a red vertical bar separating them. Although not
typically used in COBOL syntactical diagrams, this convention is an effective alternative that
may be used when square brackets would make a syntax diagram too complicated. For
example, THRU|THROUGH would indicate that either of the required reserved words THRU
or THROUGH may be used.

 Red braces are used to enclose choices. Exactly one of the choices contained within the
braces must be selected. These are also used sometimes in conjunction with the ellipsis (…)
to indicate a choice of syntactical items that may be repeated.

… A red three-dot sequence (called an “ellipsis”) may appear following [], { } or lowercase
italic entries to indicate that the syntax element preceding the ellipsis may occur multiple
times.

Shaded Areas Shaded areas are used to highlight syntax elements that are recognized by the GNU COBOL
compiler but will either have no effect on the generated code or will have a compiler
warning issued announcing that feature is unsupported. Such elements are either present
in the GNU COBOL language to facilitate the porting of programs from other COBOL
environments, reflect syntax elements that are not yet fully implemented or syntax
elements that have become obsolete.

choice-1
choice-2

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-3

1.5. General GNU COBOL Program Format

1.5.1. Source Line Format

1.5.1.1. Fixed Format Mode

Prior to the COBOL2002 standard, source statements in COBOL programs were oriented around 80-column punched
cards. This means that each source line in a COBOL program consisted of five different “areas”, defined by their
column number.

This structure is enforced by GNU COBOL when the compiler is operating in Fixed Format Mode; Fixed Format Mode is
the default mode in effect when the compiler begins execution.

Column
Numbers

Area Name Usage

1-6 Sequence
Number

Area

Historically back in the days when punched-cards were used to submit COBOL program
source to a COBOL compiler, this part of a COBOL statement was reserved for a six-digit
sequence number.

While the contents of this area are ignored by COBOL compilers, it existed so that a
program actually punched on 80-character cards could – if the card deck were dropped
on the floor – be run through a card sorter machine and restored to it’s proper sequence.
Of course, this isn’t necessary today; if truth be told, it hasn’t been necessary for a long
time.

See Section 9.1 for a discussion of how this area tends to be used today.

7 Indicator
Area

Column 7 serves as an indicator in which one of five possible values will appear – space,
“D” (or “d”), “-“ (dash), “/” or “*”. The vast majority of COBOL source file lines have a
space in this position. The values “D”, “*” and “/” are three different types of
“comment” indicators, telling the compiler to (normally) ignore this source line.

A value of “-“ served as a continuation character in the event that a literal value,
reserved word or programmer-defined name needed to be split across two lines of code.
This is/was rarely used and – when it does – is/was almost always used to continue an
alphanumeric literal (character string).

8-11 “Area A” Language DIVISION, SECTION and paragraph section headers must begin in Area A, as
must the level numbers 01, 77 in data description entries and the “FD” and “SD” file and
SORT description headers.

12-72 “Area B” All other COBOL programming language components are coded in these columns.

73-80 Program
Name Area

This is another area of COBOL statements that is ignored by COBOL compilers. This part
of every statement also hails back to the day when programs were punched on cards – it
was expected that the name of the program (or at least the first 8 characters of it) would
be punched here so that – if a dropped COBOL source deck contained more than one
program, that handy card sorter machine could be used to first separate the cards by
program name and then sort them by sequence number.

Today’s COBOL compilers (including GNU COBOL) simply ignore anything past column 73

The GNU COBOL compiler (cobc) operates in fixed format mode by default (you may explicitly specify the “-fixed”
switch, if you wish, but that is the default mode), unless you specify otherwise in one of the following ways:

 You run the compiler with the “-free” switch to turn on free-format mode.
 You use the “>>SET SOURCEFORMAT AS FREE” CDF directive to turn on free-format mode
 You use the “>>SOURCE FORMAT IS FREE” CDF directive to turn on free format mode

See Also…

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-4

Coding Comments in Programs 1.6

Alphanumeric Literals 1.8.2

The Compiler Directing Facility (CDF) 2.2

1.5.1.2. Free Format Mode

As of the COBOL2002 standard, a second mode now exists for COBOL source code statements – Free Format Mode.

In this mode of operation, GNU COBOL statements may each be up to 255 characters long, with no specific
requirements as to what should appear in which columns.

The GNU COBOL compiler (cobc) can be commanded to operate in free format mode in any of the following ways:

 You run the compiler with the “-free” switch
 You use the >>SET SOURCEFORMAT AS FREE CDF directive to turn on free-format mode
 You use the >>SOURCE FORMAT IS FREE CDF directive to turn on free format mode

Using >>SET and >>SOURCE directives in your source code, you may switch back and forth between fixed and free
format mode at will.

See Also…

Coding Comments in Programs 1.6

Alphanumeric Literals 1.8.2

The Compiler Directing Facility (CDF) 2.2

1.5.2. Program Structure

Figure 1-2 – General Format of a GNU COBOL Program

What you see here is the general format of a GNU COBOL program. Each program consists of up to four DIVISIONS
(major groupings of language statements that all relate to a common purpose). Not all divisions are needed in every
program, but they must be specified in the order shown when they are used.

[IDENTIFICATION DIVISION.]
PROGRAM-ID.|FUNCTION-ID. name-1 [options] .

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION. program-configuration-specifications]
[INPUT-OUTPUT SECTION. general-file-descriptions]

DATA DIVISION.
[FILE SECTION. detailed-file-descriptions]
[WORKING-STORAGE SECTION. permanent-data-definitions]
[LOCAL-STORAGE SECTION. temporary-data-definitions]
[LINKAGE SECTION. subprogram-argument-definitions]
[REPORT SECTION. report-definitions]
[SCREEN SECTION. screen-layout-definitions]

PROCEDURE DIVISION [options] .
DECLARATIVES.

event-handling-logic
END-DECLARATIVES.
general-program-logic

[nested-opencobol-subprogram] …
[END PROGRAM|FUNCTION name-1]

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-5

This general program structure looks quite intimidating, but bear in mind that each DIVISION and SECTION you see
here serves a very specific function, and it is rare to find a program that needs each and every one of those functions!

1. A single file of COBOL source code may contain:

a. A portion of a program; these files are known as copybooks

b. A single program. In this case, the END PROGRAM / END FUNCTION statement is optional.

c. Multiple programs, separated from one another by END PROGRAM / END FUNCTION statements. The final
program in such a source code file need not have an END PROGRAM / END FUNCTION statement.

2. Program “B” may be nested inside program “A” by including program B’s source code at the end of program A’s
PROCEDURE DIVISION without an intervening END PROGRAM A / END FUNCTION A statement. For now, that’s
all that will be said about nesting. Regardless of how many programs comprise a single GNU COBOL source file
(see #1c), only a single output executable program will be generated from that source file when the file is
compiled.

3. Here is a brief summary of the purpose of each DIVISION in a program:

DIVISION Purpose

IDENTIFICATION The IDENTIFICATION DIVISION provides basic identification of the program (or function) by
giving it a name. While the IDENTIFICATION DIVISION is required in all programs, the actual
“IDENTIFICATION DIVISION” header – as of the COBOL2002 standard – is not.

ENVIRONMENT The ENVIRONMENT DIVISION defines the external computer environment in which the
program will be operating. This includes defining any files that the program may be accessing.

DATA The DATA DIVISION is used to define all data that will be processed by a program.

PROCEDURE The PROCEDURE DIVISION contains all executable program code.

See Also…

Copybooks 1.3.3.3

Subprograms Subroutines vs Functions 7.1

Details Of Nested Subprograms 7.6

The IDENTIFICATION DIVISION 3

The ENVIRONMENT DIVISION 4

The DATA DIVISION 5

The PROCEDURE DIVISION 6

1.6. In-Program Documentation (i.e. “Comments”)

The following chart documents how comments may be imbedded into GNU COBOL program source to provide
documentation.

Type of
Comment

When in “FIXED” Mode… When in “FREE” Mode…

Blank lines Blank lines may be inserted as desired. Blank lines may be inserted as
desired.

Full-line
comments

An entire source line will be treated as a comment (and will
be ignored by the compiler) by coding an asterisk (“*”) in
column seven (7).

An entire source line will be treated
as a comment (and will be ignored by
the compiler) by coding the sequence
“*>”, starting in any column, as the
first non-blank characters on the line.

Full-line
comments
with form-
feed

An entire source line will be treated as a comment by coding
a slash (“/”) in column seven (7). In addition, most COBOL
compilers capable of generating source program listings will
issue a form-feed in the listing so that the “/” line is at the
top of a new page of the listing. The GNU COBOL compiler
(cobc) does not support this form-feed behavior, although it
does treat “/” lines as comments. The GNU COBOL
Interactive Compiler, or GCic, does support this form-feed
behavior when it generates program source listings! GCic is
a GNU COBOL program that provides a full-screen front-end
to the actual GNU COBOL compiler. You can see a
screenshot of it in section 1.3.3.9.

There is no FREE-mode equivalent to
“/”.

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-6

Type of
Comment

When in “FIXED” Mode… When in “FREE” Mode…

Partial-line
comments

Any text following the character sequence “*>” on a source
line will be treated as a comment. The “*” must appear in
column seven (7) or beyond.

Any text following the character
sequence “*>” on a source line will
be treated as a comment. The “*”
may appear in any column.

Comments
that may be
treated as
code
(typically for
debugging
purposes)

By coding a “D” in column 7 (upper- or lower-case), an
otherwise valid GNU COBOL source line will be treated as a
comment by the compiler.

By specifying the character sequence
“>>D” (upper- or lower-case) as the
first non-blank characters on a source
line, an otherwise valid GNU COBOL
source line will be treated as a
comment by the compiler.

Such statements may be compiled either by specifying the “-fdebugging-line” switch on the GNU
COBOL compiler or by adding the “WITH DEBUGGING MODE” clause to the SOURCE-COMPUTER
paragraph.

See Also…

The SOURCE-COMPUTER Paragraph 4.1.1

Sample Program Listing: GCic 9.4

1.7. Use of Commas and Semicolons

A comma (“,”) or a semicolon (“;”) may be inserted into a GNU COBOL program to improve readability at any spot
where white space would be legal (except, of course, within alphanumeric literals). These characters are always
optional.

The use of comma characters can cause “confusion” to a COBOL compiler if the DECIMAL POINT IS COMMA clause is
used in SPECIAL-NAMES. The following statement, which calls a subroutine passing it two arguments (the numeric
constants 1 and 2):

CALL “SUBROUTINE” USING 1,2

would – with DECIMAL POINT IS COMMA in effect – actually be interpreted as a subroutine call with ONE argument
(the non-integer numeric constant 1.2).

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

1.8. Use of Literals

Literals are constant values that will not change during the execution of a program. There are two fundamental types
of literals – numeric and alphanumeric.

1.8.1. Numeric Literals

Numeric literals are numeric constants which may be used as array subscripts, as values in arithmetic expressions, or
in any procedural statement where a numeric value may be used. Numeric literals may take any of the following
forms:

 Integers such as 1, 56, 2192 or -54.

 Non-integer fixed point values such as 1.12 or -2.95.

 Floating-point values using “Enn” notation such as 9.92E25 (representing 9.92 x 10
25

) or 5.7E-14
(representing 5.7 x 10

-14
). Both the mantissa (the number before the E) and the exponent (the number after

the E) may be explicitly specified as positive (with a +), negative or unsigned (and therefore implicitly
positive). A floating-point literal’s value must be within the range -1.7 x 10

308
 to +1.7 x 10

308
 with no more

than 15 decimal digits of precision.

 Hexadecimal numeric literals such as H”1F” (1F16 = 3110), h’22’ (2216 = 3410) or H’DEAD’ (DEAD16 = 5700510).
The H character may either be upper- or lower-case and either single quote (‘) or double-quote (“) characters
may be used. Hexadecimal numeric literals are limited to a maximum value of H’FFFFFFFFFFFFFFF’ (a 64-bit
value).

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-7

1.8.2. Alphanumeric Literals

Alphanumeric literals are character strings suitable for display on a computer screen, printing on a report,
transmission through a communications connection or storage in PICTURE X or PICTURE A data items. These are NOT
valid for use in arithmetic expressions unless they can first be converted to their numeric computational equivalent via
the NUMVAL and NUMVAL-C intrinsic functions.

Alphanumeric literals may take any of the following forms:

 Any sequence of characters enclosed by a pair of single-quote (‘) characters or a pair of double-quote (“)
characters constitutes a string literal. The double-quote character (“) may be used as a data character within
an apostrophe-delimited string literal, and an apostrophe may be used as a data character within a double-
quote-delimited string literal. If an apostrophe character must be included as a data character within an
apostrophe-delimited string literal, express that character as two consecutive apostrophes (‘’). If a double-
quote character must be included as a data character within a double-quote-delimited string litaral, express
that character as two consecutive double-quotes (“”).

 A literal formed according to the same rules as for a string literal (above), but prefixed with the letter “Z”
(upper- or lower-case) constitutes a zero-delimited string literal. These literals differ from ordinary string
literals in that they will be explicitly terminated with a byte of hexadecimal value 00. This facilitates the
“sharing” of such literals with C programs

8
.

 A hexadecimal literal such as X”4A4B4C” (4A4B4C16 = the ASCII string ‘JKL’), x’20’ (2016 = a space) or
X’30313233’ (3031323316 = the ASCII string ‘0123’). The “X” character may either be upper- or lower-case
and either single quote (‘) or double-quote (“) characters may be used. These hexadecimal alphanumeric
literals should always consist of an even number of hexadecimal digits, because each character is
represented by eight bits worth of data (2 hex digits). Hexadecimal alphanumeric literals may be of almost
unlimited length.

Alphanumeric literals too long to fit on a single line may be continued to the next line in one of two ways:

1. If you are using Fixed Format Mode, the alphanumeric literal can be run right up to and including column 72.
The literal may then be continued on the next line anywhere after column 11 by coding another quote or
apostrophe (whichever was used to begin the literal originally). The continuation line must also have a
hyphen (-) coded in the indicator area (column 7). Here is an example:

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
 01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE “This is a long l
 - “iteral that must
 - “ be continued.”

2. Regardless of whether the compiler is operating in Fixed or Free Format Mode, GNU COBOL allows
alphanumeric literals to be broken up into separate fragments. These fragments have their own beginning
and ending quote/apostrophe characters and are “glued together” at compilation time using “&” characters.
No continuation indicator is needed. Here’s an example:

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
 01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE “This is a” &
 “ long literal that must “ &
 “be continued.”.

If your program is using Free Format Mode, there’s less need to continue long alphanumeric literals because
statements may be as long as 255 characters.

Numeric literals may be split across lines just as alphanumeric literals are, using either of the above techniques and
both reserved and user-defined words can be split across lines too (using the first technique). The continuation of
numeric literals and user-defined/reserved words is provided merely to provide compatibility with older COBOL
versions and programs, but should not be used with new programs – it just makes for ugly-looking programs.

8
 In the C programming language, strings must be terminated with a null byte (X’00’).

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-8

See Also…

Fixed-Format Source Code 1.5.1.1

Defining a Data Item’s PICTURE 5.2.1.6

The NUMVAL Intrinsic Function 6.1.14.58

The NUMVAL-C Intrinsic Function 6.1.14.59

1.9. Use of Figurative Constants

Figurative constants are reserved words that may be used in lieu of certain literals. In general, a figurative constant
may be freely used anywhere its corresponding value could have been used; when used, their value is interpreted
were an arbitrarily long sequence of the characters in question.

The following chart lists the GNU COBOL figurative constants and their respective equivalent values.

Figure 1-3 - Figurative Constants

Figurative
Constant

Type of
Literal

Equivalent Value

ZERO, ZEROS,
ZEROES

Numeric 0

SPACE, SPACES Alphanumeric Blank
QUOTE,
QUOTES

Alphanumeric Double-quote character(s)

LOW-VALUE,
LOW-VALUES

Alphanumeric The character whose value in the programs collating sequence is lowest. If a
program is using the ASCII collating sequence, this will represent a sequence of
characters comprised entirely of 0-bits.

HIGH-VALUE,
HIGH-VALUES

Alphanumeric The character whose value in the programs collating sequence is highest. If a
program is using the ASCII collating sequence, this will represent a sequence of
characters comprised entirely of 1-bits.

NULL Alphanumeric A character comprised entirely of zero-bits (regardless of the programs collating
sequence).

1.10. User-Defined Names

When you write GNU COBOL programs, you’ll need to create a variety of names to represent various aspects of the
program, the programs data and the external environment in which the program is running.

User-defined names may be composed from the characters “A” through “Z” (upper- and/or lower-case), “0” through
“9”, dash (“-“) and underscore (“_”). User-defined names may neither start nor end with hyphen or underscore
characters.

With the exception of procedure names, user-defined names must contain at least one letter.

When user-defined names are created as names for data, they will be referenced in this document under the term
identifier.

1.11. Use of LENGTH OF

 Alphanumeric literals and identifiers may optionally be prefixed with the clause
“LENGTH OF”. In such cases, the literal actually is a numeric literal with a value
equal to the number of bytes in the alphanumeric literal. For example, the
following two GNU COBOL statements both display the same result (27):

01 Demo-Identifier PIC X(27). *> This is a 27-character data-item
.
.
.
DISPLAY LENGTH OF “This is a LENGTH OF Example”
DISPLAY LENGTH OF Demo-Identifier
DISPLAY 27

The LENGTH OF clause on a literal or identifier reference may generally be used anywhere a numeric literal might be
specified, with the following exceptions:

LENGTH OF
numeric-literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide Introduction

11FEB2012 Version 1-9

1. In place of a literal on a DISPLAY statement.

2. As part of a WRITE or RELEASE statement’s FROM clause.

3. As part of the TIMES clause of a PERFORM.

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

11FEB2012 Version 2-1

2. The GNU COBOL Compiler Directing Facility [CDF]

The Compiler Directing Facility is a means of controlling the compilation of GNU COBOL programs , providing a
mechanism for dynamically setting or resetting certain compiler switches, introducing new source code from one or
more source code libraries, making dynamic source code modifications or conditionally processing / ignoring source
statements.

When the compiler is operating in FIXED mode, all CDF statements must begin in column eight (8) or beyond.

There are two types of supported CDF statements in GNU COBOL – Text Manipulation Statements and Compiler
Directives.

2.1. Text Manipulation Statements

CDF text manipulation statements are used to introduce new code into programs either with or without changes, or
may be used to modify existing statements already in the program.

2.1.1. The COPY Statement

Figure 2-1 - COPY Syntax

COPY statements are used to import copybooks into a program.

GNU COBOL completely supports the use of copybooks. These are separate source files containing ANY GNU COBOL
SYNTAX WHATSOEVER, including other CDF statements.

1. COPY statements may be used anywhere within a COBOL program where the code contained within the copybook
would be syntactically valid.

2. The syntax diagram above places great emphasis on a period at the end of the COPY statement and any
REPLACING clauses it may have. A period is absolutely mandatory at the end of every COPY statement, even if
the COPY statement occurs within the scope of a command where a period might appear disruptive (such as
within the scope of an IF…END-IF sequence; the period on the COPY command will not, however, affect the
command scope in which the COPY occurs.

3. All COPY statements are resolved and the contents of the corresponding copybooks inserted into the program
source code before the actual compilation process begins.

4. The optional “REPLACING” clause allows any reserved words (word-1, word-2), data items (identifier-1, identifier-
2), literals (literal-1, literal-2) or whitespace-delimited phrases to be replaced. Any number of such substitutions
may be made as a copybook is included into a program.

See Also…

Copybooks 1.3.3.3

How the Compiler Finds Copybooks 8.1.5

2.1.2. The REPLACE Statement

COPY copybook-name IN|OF library-name-1 [SUPPRESS PRINTING]

REPLACING .

LEADING
TRAILING

==partial-word-1== BY ==partial-word-2==

==pseudo-text-1==
identifier-1
literal-1
word-1

==pseudo-text-2==
identifier-2
literal-2
word-2

BY

…

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

11FEB2012 Version 2-2

Format 1:
Figure 2-2 - REPLACE (Format 1) Syntax

Format 2:
Figure 2-3 - REPLACE (Format 2) Syntax

The REPLACE statement provides a mechanism for changing all or part of one or more GNU COBOL statements.

1. The syntax diagrams above place great emphasis on a period at the end of the REPLACE. A period is absolutely
mandatory at the end of every REPLACE statement, even if the REPLACE statement occurs within the scope of a
command where a period might appear disruptive (such as within the scope of an IF…END-IF sequence; the
period on the REPLACE command will not, however, affect the command scope in which the REPLACE occurs.

2. The REPLACE statement can be used to make changes to program source code in much the same way as the
REPLACING option of the COPY statement can.

3. Once a Format 1 REPLACE statement is encountered in the compilation unit, it will remain in-effect – continuing
to make those source code changes it specifies – until one of the following occurs:

a. Another Format 1 REPLACE is encountered; in such a case, the change rules defined by the former Format 1
REPLACE will be replaced by those defined by the new REPLACE, unless the newly-encountered REPLACE
statement includes the “ALSO” keyword; in this instance, the REPLACE currently in-effect will be
“remembered” and then replaced by one combining the effects of the currently in-effect REPLACE and the
new one.

b. A Format 2 REPLACE is encountered. If the Format 2 REPLACE includes the “LAST” keyword, the currently in-
effect REPLACE will be terminated and the most-recently “remembered” REPLACE will be re-activated. If the
Format 2 REPLACE does not include the “LAST” keyword, the currently in-effect REPLACE will be terminated
and all “remembered” prior REPLACEs will be discarded; no further changes will be made until such a point as
another Format 1 REPLACE (if any) is encountered.

c. The last line of source code in the compilation unit has been processed.

2.2. CDF Directives

Compiler Directing Facility directives, or statements, are denoted by the presence of a “>>” character sequence as part
of the statement name itself – are used to influence the process of program compilation.

2.2.1. The >>DEFINE Directive

Figure 2-4 - >>DEFINE Syntax

Use >>DEFINE to create CDF variables and (optionally) assign them either literal or environment variable values.

1. CDF variables defined in this way become undefined once an END PROGRAM or END FUNCTION directive is
encountered in the input source.

REPLACE [ALSO] .

==pseudo-text-1== BY ==pseudo-text-2==

LEADING
TRAILING

==partial-word-1== BY ==partial-word-2==

REPLACE [LAST] OFF .

>>DEFINE [CONSTANT] cdf-variable-1 AS PARAMETER
literal-1

OFF

[OVERRIDE]

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

11FEB2012 Version 2-3

2. The >>DEFINE statement is one way to create CDF variables that may be processed by other CDF statements such
as >>IF. The >>SET statement provides another way to create them.

3. CDF variable names follow the rules for standard GNU COBOL user-defined names, and may not duplicate any CDF
reserved word. CDF variable names may duplicate COBOL reserved words, provided the CONSTANT option is not
specified, but such names are not recommended.

4. The CONSTANT option, valid only in conjunction with literal-1, defines a CDF variable that may be used within
your regular COBOL code as if it were a literal value. Without the CONSTANT option, the CDF variable may only
be referenced on other CDF statements.

5. The OFF option is used to create a variable without assigning it any value.

6. The PARAMETER option is used to create a variable whose value is that of the environment variable of the same
name. Note that this value assignment occurs at compilation time, not program execution time.

7. The “literal-1” option is used to specify a numeric or alphanumeric literal, as previously discussed.

8. In the absence of the OVERRIDE option, cdf-variable-1 must not yet have been DEFINEd.

9. When the OVERRIDE option is specified, cdf-variable-1 will be created with the specified value, if it had not yet
been DEFINEd, or it will be re-DEFINEd with the new value if it had already been DEFINEd.

10. See Also…

Literals 1.8

User-defined Names 1.10

The >>SET CDF Statement 2.2.3

2.2.2. The >>IF Directive

Figure 2-5 - >>IF Syntax

Conditionally process or ignore COBOL source
statements and/or CDF text-manipulation
statements depending upon the value of one or
more conditional expressions based upon CDF
variables.

1. Each >>IF statement must be terminated by
an >>END-IF statement.

2. There may be any number of >>ELIF clauses
following an >>IF, including zero.

3. The syntax of a constant-conditional expression is as follows:

Figure 2-6 - >>IF constant-conditional-expression Format

4. The text-1, text-2 and text-n entries represent lines of source code that may consist of any number of GNU COBOL
statements and/or CDF text-manipulation statements (including none at all). Currently, text-1, text-2 and text-n
should not contain any CDF compiler directives (“>>” statements).

5. Each constant-conditional-expression will be evaluated in the sequence in which they are coded in the >>IF
statement and any >>ELIF clauses that may be present until one evaluates to TRUE. Once one of them evaluates
to TRUE, the corresponding text block of statements will be processed by the compiler and all others within the
scope of the >>IF statement will be skipped. If none of them evaluate to TRUE, the text-n block of statements
(following the >>ELSE clause) will be processed by the compiler and all others within the scope of the >>IF

>>IF constant-conditional-expression-1
[program-source-lines-1]

>>ELIF constant-conditional-expression-1
[program-source-lines-2]

>>ELSE
[program-source-lines-n]

>>END-IF

…

IS [NOT]
cdf-variable-1
literal-1

DEFINED
SET
cdf-relational-operator

cdf-variable-2
literal-2

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

11FEB2012 Version 2-4

statement will be skipped. If none of the constant-conditional-expressions evaluate to TRUE and there is no
>>ELSE clause, then none of the text blocks of statements within the scope of the >>IF will be processed by the
compiler.

6. The following rules pertain to constant-conditional-Expressions

a. The DEFINED option tests for whether variable-1 has been defined, but not yet assigned a value (>>DEFINE …
OFF); use the NOT option to test for the variable not being defined.

b. The SET option tests for whether variable-1 has been given a value, either via a >>SET statement or via a
>>DEFINE without the OFF option.

c. Two CDF variables, two literals or a single CDF variable and a single literal may be compared against each
other using a relational operator. Unlike the standard GNU COBOL IF statement, multiple comparisons
cannot be “AND”ed or “OR”ed together; you may nest a second >>IF inside the first, however, to simulate an
“AND” and an “OR” may be simulated via the >>ELIF option. Valid relational operators are as follows (you
may use either words or symbols):

GREATER THAN OR EQUAL TO >=
GREATER THAN >
LESS THAN OR EQUAL TO <=
LESS THAN <
EQUAL TO =
 <> (meaning “not equal”)

2.2.3. The >>SET Directive

Figure 2-7 - >>SET Syntax

The >>SET statement provides an
alternate means of performing the
actions of the >>DEFINE and
>>SOURCE statements, as well as a
means of controlling the “-free” , “-
fixed” and “-ffold-copy” compiler
switches from within program source
code itself.

1. CDF variables defined in this way become undefined once an END PROGRAM or END FUNCTION directive is
encountered in the input source.

2. The FOLDCOPYNAME option provides the equivalent of specifying the compiler “-ffold-copy=xxx” switch, where
“xxx” is either “UPPER” or “LOWER”.

3. The NOFOLDCOPYNAME option turns off the effect of either the >>SET FOLDCOPYNAME statement or the “-
ffold-copy” switch.

4. If the “CONSTANT” option is used, the “AS” option must also be used.

5. The remaining options of the >>SET statement provide equivalent functionality to the >>DEFINE and >>SOURCE
statements, as shown in the following table:

>>SET Statement Equivalent >>DEFINE or >>SOURCE Statement

>>SET cdf-variable >>DEFINE cdf-variable AS OFF

>>SET cdf-variable AS literal-1 >>DEFINE cdf-variable AS literal-1

>>SET CONSTANT cdf-variable-1 AS literal-1 >>DEFINE CONSTANT cdf-variable-1 AS literal-1

>>SET SOURCEFORMAT AS FIXED >>SOURCE FORMAT IS FIXED; sets the “-fixed”
compiler switch

>>SET SOURCEFORMAT AS FREE >>SOURCE FORMAT IS FREE; sets the “-free” compiler
switch

[CONSTANT] cdf-variable-1 [AS literal-1]

SOURCEFORMAT AS

NOFOLDCOPYNAME

FOLDCOPYNAME AS

>>SET

UPPER
LOWER

FIXED
FREE

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

11FEB2012 Version 2-5

See Also…

Compiler Switches Reference 8.1.2

2.2.4. The >>SOURCE Directive

Figure 2-8 - >>SOURCE Syntax

The >>SOURCE statement puts the compiler into FIXED or FREE
source-code format mode. This, in effect, provides yet another
mechanism for controlling the “-free” and “-fixed” compiler
switches.

1. You may switch between FIXED and FREE mode as desired.

2. You may also use the >>SET statement to perform this function.

3. If the compiler is already in the specified mode, this statement will have no effect.

See Also…

The >>SET CDF Statement 2.2.3

Compiler Switches Reference 8.1.2

2.2.5. The >>TURN Directive

Figure 2-9 - >>TURN Syntax

The >>TURN statement, while accepted syntactically, is currently non-functional.

>>SOURCE FORMAT IS
FIXED
FREE

>>TURN { exception-name-1 [file-name-1] … } … CHECKING
ON [WITH LOCATION]
OFF

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

11FEB2012 Version 2-6

GNU COBOL 2.0 Programmers Guide IDENTIFICATION DIVISION

11FEB2012 Version 3-1

3. IDENTIFICATION DIVISION

Figure 3-1 - IDENTIFICATION DIVISION Syntax

The IDENTIFICATION DIVISION provides basic identification of the program by giving it a name, and optionally defining
some high-level characteristics.

1. While the actual IDENTIFICATION DIVISION header is optional, the PROGRAM-ID / FUNCTION-ID clause is not.

2. The AUTHOR, DATE-COMPILED, DATE-WRITTEN, FUNCTION-ID, INSTALLATION, PROGRAM-ID, REMARKS and
SECURITY clauses may be specified in any sequence. These clauses are supported by GNU COBOL only to provide
compatibility with programs written for the ANS1974 (or earlier) standards. As of the ANS1985 standard, these
clauses have been obsolete and should not be used in new programs.

The “-Wobsolete” compilation switch will cause the GNU COBOL compiler to issue warnings messages if these (or
any other obsolete syntax) is used in a program.

3. Both literal-1 and literal-2 must be actual alphanumeric literals and may not be figurative constants.

4. The PROGRAM-ID and FUNCTION-ID clause serve to identify the program to the external (i.e. operating system)
environment. If there is no AS clause present, the program-name or function-name will serve as that external
identification. If there is an AS clause specified, that specified literal will serve as the external identification. For
the remainder of this document, that “external identification” will be referred to as the primary entry-point name.

5. The INITIAL, COMMON and RECURSIVE clauses are used only within subprograms serving as subroutines. The
COMMON clause should be used only within subprograms that are nested subprograms. The INITIAL clause, if
specified, guarantees the subprogram will be in its initial (i.e. compiled) state each and every time it is executed,
not just the first time. The COMMON clause may only be specified within a nested subprogram. A nested
subprogram declared as COMMON may be called from any nested program in the source file being compiled, not
just those “above” it in the nesting structure. The RECURSIVE clause, if any, marks a subprogram as being able to
invoke itself. User-defined functions are always RECURSIVE.

See Also…

Subprograms Subroutines vs Functions 7.1

Details Of Nested Subprograms 7.6

Recursive Subprogramming 7.7

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name [AS literal-1] IS PROGRAM .

FUNCTION-ID. function-name [AS literal-2] .

INITIAL
COMMON
RECURSIVE

[AUTHOR. comment-1.]

[DATE-COMPILED. comment-2.]

[DATE-WRITTEN. comment-3.]

[INSTALLATION. comment-4.]

[REMARKS. comment-5.]

[SECURITY. comment-6.]

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-1

4. ENVIRONMENT DIVISION

Figure 4-1 - ENVIRONMENT DIVISION Syntax

The ENVIRONMENT
DIVISION defines the
external computer
environment in which the
program will be operating.
This includes defining any
files that the program may
be accessing.

1. If none of the features provided by the ENVIRONMENT DIVISION are required by a program, the ENVIRONMENT
DIVISION may be omitted from the program.

4.1. CONFIGURATION SECTION

Figure 4-2 - CONFIGURATION SECTION Syntax

The CONFIGURATION DIVISION defines the computer system upon which the program is being compiled and
executed and also specifies any special environmental configuration or compatibility characteristics.

1. The CONFIGURATION SECTION is not allowed in a nested subprogram – nested programs will inherit the
CONFIGURATION SECTION settings of their parent program.

2. If none of the features provided by the CONFIGURATION SECTION are required by a program, the entire
CONFIGURATION SECTION may be omitted from the program.

3. The sequence in which the CONFIGURATION SECTION paragraphs are specified is irrelevant.

See Also…

Details Of Nested Subprograms 7.6

4.1.1. SOURCE-COMPUTER Paragraph

Figure 4-3 - SOURCE-COMPUTER Paragraph Syntax

The SOURCE-COMPUTER paragraph defines
the computer upon which the program is
being compiled and provides one way in
which debugging code imbedded within the
program may be activated.

1. The SOURCE-COMPUTER paragraph is not allowed in a nested subprogram – nested programs will inherit the
SOURCE-COMPUTER settings of their parent program.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
[SOURCE-COMPUTER. compilation-computer-specifications]
[OBJECT-COMPUTER. execution-computer-specifications]
[REPOSITORY. function-specifications]
[SPECIAL-NAMES. program-configuration-specifications]

INPUT-OUTPUT SECTION.
[FILE-CONTROL. general-file-descriptions]
[I-O-CONTROL. file-buffering-specifications]

CONFIGURATION SECTION.
[SOURCE-COMPUTER. compilation-computer-specifications]
[OBJECT-COMPUTER. execution-computer-specifications]
[REPOSITORY. function-specifications]
[SPECIAL-NAMES. program-configuration-specifications]

SOURCE-COMPUTER.
computer-name [WITH DEBUGGING MODE] .

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-2

2. The value specified for computer-name is irrelevant, provided it is a valid COBOL word that does not match any
GNU COBOL reserved word. The computer-name may include spaces. This need not match the computer-name
used with the OBJECT-COMPUTER paragraph, if any

3. The WITH DEBUGGING MODE clause, if present, will signal the compiler that debugging lines – normally treated
as comments - are to be compiled.

4. Even without the WITH DEBUGGING MODE clause, it is still possible to compile debugging lines. Debugging lines
may also be compiled by specifying the “-fdebugging-line” switch to the GNU COBOL compiler.

5. See Also…

Coding Comments in Programs 1.6

Details Of Nested Subprograms 7.6

4.1.2. OBJECT-COMPUTER Paragraph

Figure 4-4 - OBJECT-COMPUTER Paragraph Syntax

The OBJECT-COMPUTER
paragraph describes the
computer upon which the
program will execute. This
paragraph is not merely
documentation.

1. The value specified for computer-name, if any, is irrelevant provided it is a valid COBOL word that does not match
any GNU COBOL reserved word. The computer-name may include spaces. This need not match the computer-
name used with the SOURCE-COMPUTER paragraph, if any

2. The OBJECT-COMPUTER paragraph is not allowed in a nested subprogram – nested programs will inherit the
OBJECT-COMPUTER settings of their parent program.

3. The MEMORY SIZE and SEGMENT-LIMIT clauses are supported for compatibility purposes, but are non-functional
in GNU COBOL.

4. The PROGRAM COLLATING SEQUENCE clause allows you to specify a customized character collating sequence to
be used when alphanumeric values are compared to one another. Data will still be stored in the characterset
native to the computer, but the logical sequence in which characters are ordered for comparison purposes can be
altered from that inherent to the computer’s native characterset. The alphabet-name-1 you specify needs to be
defined in the SPECIAL-NAMES paragraph.

5. If no PROGRAM COLLATING SEQUENCE clause is specified, the collating sequence implied by the characterset
native to the computer (usually ASCII) will be used.

6. The optional CHARACTER CLASSIFICATION clause may be used to specify a locale for the environment in which
the program will be executing, for the purpose of influencing the uppercase and lowercase mappings of
characters for the UPPER-CASE and LOWER-CASE intrinsic functions and the classification of characters for the
ALPHABETIC, ALPHABETIC-LOWER and ALPHABETIC-UPPER class tests.

The definitions of these classes will be taken from the cultural convention specification (LC_CTYPE) from the
specified locale.

locale-name-1

LOCALE
USER-DEFAULT
SYSTEM-DEFAULT

OBJECT-COMPUTER.
[computer-name]

MEMORY SIZE IS integer-1

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1]

[SEGMENT-LIMIT IS integer-2]

[CHARACTER CLASSIFICATION IS]

.

WORDS
CHARACTERS

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-3

The meanings of the four locale specifications are as follows:

 locale-name-1 references a LOCALE definition that must occur within the SPECIAL-NAMES paragraph.
 The keyword LOCALE refers to the current locale (in effect at the time the program is executed)
 The keyword USER-DEFAULT references the default locale specified for the user currently executing this

program.
 The keyword SYSTEM-DEFAULT denotes the default locale specified for the computer upon which the

program is executing.

Absence of a CHARACTER CLASSIFICATION clause will cause character classification to occur according to the
rules for the computer’s native characterset (ASCII, EBCDIC, …).

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

Class Tests 6.1.4.2.2

LOWER-CASE Intrinsic Function 6.1.7.39

UPPER-CASE Intrinsic Function 6.1.7.87

Details Of Nested Subprograms 7.6

4.1.3. REPOSITORY Paragraph

Figure 4-5 - REPOSITORY Paragraph Syntax

The REPOSITORY
paragraph provides a
mechanism for
controlling access to
the various built-in
intrinsic functions and
any user-defined
functions that your
program will be using.

1. The REPOSITORY paragraph is not allowed in a nested subprogram – nested programs will inherit the
REPOSITORY settings of their parent program.

2. The “INTRINSIC” clause allows you to flag one or more (or ALL) built-in intrinsic functions as being usable without
the need to code the keyword “FUNCTION” in front of the function names.

3. As an alternative to using the “FUNCTION ALL INTRINSIC” clause, you may instead compile your GNU COBOL
programs using the “-ffunctions-all” switch.

4. The function-prototype-name-1 option is required to specify the name of a user-defined function your program
will be using. Optionally, should you desire, you may specify an alias name by which you will reference that user-
defined function. Should you wish, you may also use the “AS” clause to provide an alias name for a built-in
intrinsic function.

The following example accomplishes these objectives:

 It enables all intrinsic functions to be specified without the use of the “FUNCTION” keyword.
 It names two user-defined functions that will be used by the program: “MY-FUNCTION-1” and “USER-

DEFINED-FUNCTION-NUMBER-2”
 It specifies the alias names “SIGMA” for the intrinsic function “STANDARD-DEVIATION” and “UDF2” for

“USER-DEFINED-FUNCTION-NUMBER-2”.

REPOSITORY.
 FUNCTION ALL INTRINSIC.
 FUNCTION MY-FUNCTION-1.
 FUNCTION USER-DEFINED-FUNCTION-NUMBER-2 AS “UDF2”.
 FUNCTION STANDARD-DEVIATION AS “SIGMA”.

REPOSITORY.

FUNCTION . …

[AS literal-1]
Intrinsic-function-name-2
Function-prototype-name-1

intrinsic-function-name-1

ALL
INTRINSIC

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-4

A SPECIAL NOTE ABOUT USER-DEFINED FUNCTIONS – because you must name a user-defined function that your
program will be using in the REPOSITORY paragraph, you may always reference that function from your program’s
PROCEDURE DIVISION without needing to use the “FUNCTION” keyword.

See Also…

Intrinsic Functions 6.1.7

User-defined Functions 7.4.2

Details Of Nested Subprograms 7.6

4.1.4. SPECIAL-NAMES Paragraph

Figure 4-6 - SPECIAL-NAMES Paragraph Syntax

The SPECIAL-NAMES paragraph
provides a means for specifying
various program and operating
environment configuration options.

1. The SPECIAL-NAMES paragraph is
not allowed in a nested
subprogram – nested programs
will inherit the SPECIAL-NAMES
settings of their parent program.

2. The various clauses that may be
specified within the SPECIAL-
NAMES paragraph may be coded
in any order.

3. Only the final clause specified
within the SPECIAL-NAMES
paragraph should be terminated
with a period.

4. The CALL-CONVENTION clause
allows a decimal integer,
representing a series of ON/OFF
switch settings, to be associated
with a mnemonic name which
may then be coded on CALL
statements. The switch settings
defined by this mnemonic will
then control how the linkage to
the subroutine (invoked by the
CALL statement that references
mnemonic-name-1) will be
handled.

5. The CONSOLE IS CRT clause, if specified, will cause any DISPLAY or ACCEPT statements lacking explicit “UPON”
clauses to be treated as full-screen DISPLAYs or ACCEPTs.

6. If the CRT STATUS clause is not specified, an implicit COB-CRT-STATUS identifier (with a PICTURE of 9(4)) will be
allocated for the purpose of receiving screen ACCEPT statuses. If it is specified, then identifier-1 must be defined
in the program as a PIC 9(4) field.

7. The CURRENCY SIGN clause may be used to define any single character as the currency sign used in PICTURE
symbol editing. The default currency sign is a dollar-sign ($).

8. The CURSOR IS clause allows you to specify a 4- or 6-character data item into which the cursor screen location at
the time a screen ACCEPT is satisfied. The value will be returned as rrcc or rrrccc, depending upon the length of
the specified identifier-2, where “rr” and “rrr” represent the row number (starting at zero) and “cc” and “ccc”
represent the column number (also starting at zero). There is no default data item allocated for this data if the
CURSOR IS clause is not specified.

SPECIAL-NAMES.

[CALL-CONVENTION integer-1 IS mnemonic-name-1]

[CONSOLE IS CRT]

[CRT STATUS IS identifier-1]

[CURRENCY SIGN IS literal-1]

[CURSOR IS identifier-2]

[DECIMAL-POINT IS COMMA]

[EVENT STATUS IS identifier-3]

[LOCALE locale-name-1 IS literal-2] …

[NUMERIC SIGN IS TRAILING SEPARATE]

[SCREEN CONTROL IS identifier-4]

[device-name-1 IS mnemonic-name-2] …

[feature-name-1 IS mnemonic-name-3] …

[alphabet-name-clause] …

[class-definition-clause] …

[switch-definition-clause] …

[symbolic-characters-clause] …

.

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-5

9. The DECIMAL POINT IS COMMA clause reverses the definition of the “,” and “.” characters when they are used as
PICTURE editing symbols and numeric literals. This can have unwanted side-effects.

10. The LOCALE clause may be used to associate external OS-defined locale names (literal-6) with an internal name
(locale-name-1) that may then be referenced within the program. Locale names are defined by the Operating
System and/or C compiler GNU COBOL will be utilizing on your computer.

The following table provides a list of possible locale codes, fgor example, that would be available on a Windows
computer running a GNU COBOL that was built utilizing the MinGW Unix-emulator and the GNU C compiler (gcc):

Figure 4-7 – Typical Locale Codes
af_ZA
am_ET
ar_AE
ar_BH
ar_DZ
ar_EG
ar_IQ
ar_JO
ar_KW
ar_LB
ar_LY
ar_MA
ar_OM
ar_QA
ar_SA
ar_SY
ar_TN
ar_YE
arn_CL
as_IN
az_Cyrl_AZ
az_Latn_AZ
ba_R

be_BY
bg_BG
bn_IN
bo_BT
bo_CN
br_FR
bs_Cyrl_BA
bs_Latn_BA
ca_ES
cs_CZ
cy_GB
da_DK
de_AT
de_CH
de_DE
de_LI
de_LU
dsb_DE
dv_MV
el_GR
en_029
en_AU
en_BZ

en_CA
en_GB
en_IE
en_IN
en_JM
en_MY
en_NZ
en_PH
en_SG
en_TT
en_US
en_ZA
en_ZW
es_AR
es_BO
es_CL
es_CO
es_CR
es_DO
es_EC
es_ES
es_GT
es_HN

es_MX
es_NI
es_PA
es_PE
es_PR
es_PY
es_SV
es_US
es_UY
es_VE
et_EE
eu_ES
fa_IR
fi_FI
fil_PH
fo_FO
fr_BE
fr_CA
fr_CH
fr_FR
fr_LU
fr_MC
fy_NL

ga_IE
gbz_AF
gl_ES
gsw_FR
gu_IN
ha_Latn_NG
he_IL
hi_IN
hr_BA
hr_HR
hu_HU
hy_AM
id_ID
ig_NG
ii_CN
is_IS
it_CH
it_IT
iu_Cans_CA
iu_Latn_CA
ja_JP
ka_GE
kh_KH

kk_KZ
kl_GL
kn_IN
ko_KR
kok_IN
ky_KG
lb_LU
lo_LA
lt_LT
lv_LV
mi_NZ
mk_MK
ml_IN
mn_Cyrl_MN
mn_Mong_CN
moh_CA
mr_IN
ms_BN
ms_MY
mt_MT
nb_NO
ne_NP
nl_BE

nl_NL
nn_NO
ns_ZA
oc_FR
or_IN
pa_IN
pl_PL
ps_AF
pt_BR
pt_PT
qut_GT
quz_BO
quz_EC
quz_PE
rm_CH
ro_RO
ru_RU
rw_RW
sa_IN
sah_RU
se_FI
se_NO
se_SE

si_LK
sk_SK
sl_SI
sma_NO
sma_SE
smj_NO
smj_SE
smn_FI
sms_FI
sq_AL
sr_Cyrl_BA
sr_Cyrl_CS
sr_Latn_BA
sr_Latn_CS
sv_FI
sv_SE
sw_KE
syr_SY
ta_IN
te_IN
tg_Cyrl_TJ
th_TH tk_TM
tmz_Latn_DZ

tn_ZA
tr_IN
tr_TR
tt_RU
ug_CN
uk_UA
ur_PK
uz_Cyrl_UZ
uz_Latn_UZ
vi_VN
wen_DE
wo_SN
xh_ZA
yo_NG
zh_CN
zh_HK
zh_MO
zh_SG
zh_TW
zu_ZA

11. The NUMERIC SIGN IS TRAILING SEPARATE specification causes all signed numeric USAGE DISPLAY data items to
be created as if the SIGN IS TRAILING SEPARATE CHARACTER clause was included in their definitions.

12. While the SCREEN CONTROL and EVENT STATUS clauses are clearly noted at compilation time as being
unsupported, the CURSOR IS clause is not; currently, however, it appears to be non-functional at runtime.

13. The “device-name IS mnemonic-name-2” clause allows you to specify an alternate name for one of the built-in
GNU COBOL device names specified before the “IS”. The list of device names built-into GNU COBOL, and the
physical device associated with that name, are as follows:

Figure 4-8 - Built-In GNU COBOL Device Names

Built-In GNU COBOL Device Name Associated Actual Device

CONSOLE This is the (screen-mode) display of the PC or Unix
system

STDIN
SYSIN
SYSIPT

Standard system input (pipe 0). On a PC or UNIX
system, this is typically the keyboard. Can be specified
to a GNU COBOL program from a file by adding the
sequence “0< filename” to the end of the programs
execution command.

PRINTER
STDOUT
SYSLIST
SYSLST
SYSOUT

Standard system output (pipe 1). On a PC or UNIX
system, this is typically the display. Can be sent to a file
by adding the sequence “1> filename” to the end of the
programs execution command.

STDERR
SYSERR

Standard system error output (pipe 2). On a PC or
UNIX system, this is typically the display. Can be sent
to a file by adding the sequence “2> filename” to the
end of the programs execution command.

14. The “feature-name-1 IS mnemonic-name-3” clause allow for mnemonic names to be assigned to up to the 13
printer channel (i.e. vertical page positioning) position feature names “C01” through “C12” and “CSP”. Once a
channel position has been assigned a mnemonic name, statements of the form “WRITE record-name AFTER

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-6

ADVANCING mnemonic-name-3”
9
 may be coded to write the specified print record at the channel position

assigned to mnemonic-name-3.

Printers supporting channel positioning are generally mainframe-type line printers. When writing to printers that
do not support channel positioning, a formfeed will be issued to the printer.

The CSP positioning option stands for “No Spacing”. Testing on a MinGW build of GNU COBOL shows that this too
results in a formfeed being issued.

See Also…

Using Commas and Semicolons 1.7

OBJECT-COMPUTER And LOCALEs 4.1.2

Defining a Data Item’s PICTURE 5.2.1.6

The ACCEPT Statement (Screen Data) 6.4.1.4

The CALL Statement 6.4.5

Details Of Nested Subprograms 7.6

4.1.4.1. The alphabet-name Clause

Figure 4-9 - The SPECIAL-NAMES "alphabet-name" Clause

The ALPHABET clause provides a means for
relating a name to a specified character code set
or collating sequence, including those you define
yourself using the “literal-1” option. You may
specify an alphanumeric literal for any of the
literal-1, literal-2 or literal-3 specifications. You
may also specify any of the figurative constants
SPACE, SPACES, ZERO, ZEROS, ZEROES, QUOTE,
QUOTES, HIGH-VALUE, HIGH-VALUES, LOW-
VALUE or LOW-VALUES.

1. The reserved word “THROUGH” may be used
interchangeably with “THRU”.

4.1.4.2. The class-name Clause

Figure 4-10 - The SPECIAL-NAMES "class-name" Clause

User-defined classes are defined using the
CLASS clause.

1. The reserved word THROUGH may be used interchangeably with THRU.

2. Both literal-1 and literal-2 must be alphanumeric literals of length 1.

3. The literal(s) specified on that clause define the possible characters that may be found in a data item’s value in
order to be considered part of the class.

For example, the following defines a class called “Hexadecimal”, the definition of which specifies the only
characters that may be present in an alphanumeric data item if that data item is to be part of the “Hexadecimal”
class:

CLASS Hexadecimal IS ‘0’ THRU ‘9’
 ‘A’ THRU ‘F’
 ‘a’ THRU ‘f’

4. See section for an example of how this user-defined class might be used.

9
 BEFORE ADVANCING is possible also. See the WRITE statement in section 6.2.50 for additional information.

ALPHABET alphabet-name-1 IS

NATIVE
STANDARD-1
STANDARD-2
EBCDIC

literal-1 …
THRU|THROUGH literal-2
{ ALSO literal-3 } …

CLASS class-name-1 IS

{ literal-1 [THRU|THROUGH literal-2] } …

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-7

See Also…

Class Tests 6.1.4.2.2

4.1.4.3. The switch-definition Clause

Figure 4-11 - The SPECIAL-NAMES "switch-definition" Clause

The switch-definition clause associates a condition-name with
a run-time execution switch so that the status of that switch
may be tested from within a program.

1. The valid switch-names are SWITCH-0 through SWITCH-15.

2. If the program is compiled with the “-fsyntax-extension” compiler switch, the switch names “SW0” through
“SW15” are also valid; they correspond to “SWITCH-0” through “SWITCH-15”, respectively.

3. At execution time, each switch will be associated with an environment variable named “COB_SWITCH_n”, where
“n” will have the value “0” through “15”. Any of these sixteen environment variables that have the value “ON”
(regardless of upper- or lower-case value) will be considered to be set “on”. Any of these sixteen environment
variables having no value at all or a value other than “ON” will be considered “off”.

4. Each specified switch must have at least one of a “IS mnemonic-name”, ON STATUS or an OFF STATUS option
defined for it (otherwise there will be no way to reference the switch from within a GNU COBOL program).

5. The “IS mnemonic-name” syntax provides a means for setting the switch to either an ON or OFF value via the SET
statement.

6. The ON STATUS and OFF STATUS syntax provides a way of associating a condition-name with either the on or off
status of the switch, so that status may be tested at execution time via the IF statement.

See Also…

Condition Names 6.1.4.2.1

Switch-Status Conditions 6.1.4.2.4

The IF Statement 6.2.21

The SET SWITCH Statement 6.4.39.7

4.1.4.4. The symbolic-characters clause

Figure 4-12 - The SPECIAL-NAMES "symbolic-characters" Clause

The SYMBOLIC CHARACTERS
clause may be used to define your
own figurative constants.

1. The word IS may be substituted for the word ARE, if desired.

2. There must be exactly as many integer-1 values specified after the word ARE (or IS) as there are symbolic-
character-1 names specified before it.

3. Each symbolic character name will be associated with the corresponding “integer-1”th character in the alphabet
named in the IN clause. The integer values are selecting characters from the alphabet by their ordinal position
and not by their numeric value; thus, an integer of 15 will select the 15

th
 character in the specified alphabet,

regardless of the actual numeric value of the bit pattern that constitutes that character.

4. If no alphabet-name-1 is specified, the systems native characterset will be assumed.

The following two code examples define the same set of figurative constant names for five ASCII control characters
(assuming that ASCII is the system’s native characterset). The two examples are identical in their effects, even though
the manner in which the figurative constants are defined is different.

switch-name-1 [IS mnemonic-name-1]

ON STATUS IS condition-name-1
OFF STATUS IS condition-name-2

…

SYMBOLIC CHARACTERS

{ { symbolic-character-1 } … ARE { integer-1 } … } …

[IN alphabet-name-1]

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-8

SPECIAL-NAMES.
 SYMBOLIC CHARACTERS NUL IS 1
 SOH IS 2
 BEL IS 8
 DC1 IS 18
 DC2 IS 19.

SPECIAL-NAMES.
 SYMBOLIC CHARACTERS NUL SOH BEL DC1 DC2
 ARE 1 2 8 18 19.

4.2. INPUT-OUTPUT SECTION

Figure 4-13 - INPUT-OUTPUT SECTION Syntax

The INPUT-OUTPUT section provides
for the definition of any files the
program will be accessing as well as
control of the I/O buffering process
against those files.

1. If the compiler “config” file you are using has “relaxed-syntax-check” set to “yes”, the FILE-CONTROL and I-O-
CONTROL paragraphs may be specified without the INPUT-OUTPUT SECTION header having been specified.

2. If the program uses no files, it needs neither a FILE-CONTROL or I-O-CONTROL paragraph.

See Also…

GNU COBOL “config” Files 8.1.6

INPUT-OUTPUT SECTION.
[FILE-CONTROL. general-file-descriptions]
[I-O-CONTROL. file-buffering-specifications]

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-9

4.2.1. File SELECT Statement

Figure 4-14 – File SELECT Statement Syntax

The SELECT
statement of
the FILE-
CONTROL
paragraph
creates a
definition of a
file and links
that COBOL
definition to
the external
operating
system
environment.

What is shown
here are those
clauses of the
SELECT
statement
that are
common to all
types of files.

Upcoming
sections will
discuss special
SELECT
clauses that
only pertain to
certain types
of files.

1. The COLLATING SEQUENCE, RECORD DELIMITER, RESERVE and SHARING WITH ALL OTHER clauses, as well as the
specification of a secondary FILE-STATUS field and LOCK MODE … WITH ROLLBACK, while syntactically
recognized, are not currently supported by GNU COBOL.

2. The OPTIONAL clause, to be used only for files that will be used to provide input data to the program, indicates
the file may or may not actually be available at run-time. Attempts to OPEN an OPTIONAL file when the file does
not exist will receive a special non-fatal file status value (see status 05 in Figure 4-15 below) indicating the file is
not available; a subsequent attempt to READ that file will return an AT END (end-of-file) condition. Optionally,
files may be designated as NOT OPTIONAL, if desired. This is useful when specifying the “-foptional-file” compiler
switch.

3. The file-name-1 value that you specify will be the name by which you will reference the file within your program.
This name should be formed according to the rules for user-defined names.

4. The EXTERNAL option flags the file as being sharable with other GNU COBOL programs that include the same
SELECT statement. Those other programs must either be executed as subprograms from this one or must execute
this one as a subprogram. Once an EXTERNAL file has been OPENed by one of the programs SELECTing the
EXTERNAL file, that file is available for READing, WRITEing and the like from any of the programs that share it.
Similarly, once one program CLOSEs the file, no other program sharing that file may access the file further unless
the file is re-OPENed.

SELECT [[NOT] OPTIONAL] file-name-1

ASSIGN TO

STATUS IS identifier-2 [identifier-3]

[COLLATING SEQUENCE IS alphabet-name-1]

LOCK MODE IS

EXCLUSIVE

MANUAL
AUTOMATIC

[RECORD DELIMITER IS STANDARD-1]

[RESERVE integer-1 AREAS]

SHARING WITH

[organization-clause] .

EXTERNAL
DYNAMIC

DISC|DISK
TAPE
RANDOM
DISPLAY
KEYBOARD
LINE ADVANCING
PRINTER

literal-1
identifier-1

FILE
SORT

WITH LOCK ON MULTIPLE RECORDS
WITH LOCK ON RECORD
WITH ROLLBACK

ALL OTHER
NO OTHER
READ ONLY

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-10

5. The DYNAMIC option specifies that the actual pathname of the file being SELECTed will be specified at execution
time as the contents of identifier-1. If you use the DYNAMIC option, you must specify identifier-1. If you specify
identifier-1 on the SELECT, the DYNAMIC option will be assumed if not specified.

6. Optionally, you may define the type of device the file will be assigned to, as follows.

a. The DISK and DISC devices (the two are synonymous with one another) are typically used in conjunction with
a “literal-1” or “identifier-1” option. If neither the “literal-1” nor “identifier-1” option is provided, the SELECT
will reference a file named “file-name-1” in whatever folder is current at the time the file is OPENed.

b. The TAPE and RANDOM devices behave in a manner similar to DISC (or DISK) and are included into GNU
COBOL to facilitate the compilation of COBOL source from other COBOL implementations.

c. The KEYBOARD, DISPLAY and PRINTER devices refer to the PC keyboard and display and STDOUT devices,
respectively. When either literal-1 or identifier-1 are specified with these device types, the effect will be the
same as if DISC or DISK had been used. When neither literal-1 nor identifier-1 are used, these devices will be
associated with the STDIN (KEYBOARD)and STDOUT (DISPLAY or PRINTER) devices, respectively (see Figure
4-8).

d. A file ASSIGNed to the PRINTER device must be defined with an ORGANIZATION IS LINE SEQUENTIAL (if no
ORGANIZATION is specified, LINE SEQUENTIAL will be assumed).

e. The LINE ADVANCING device defines the file as a special form of LINE SEQUENTIAL file. When this device is
used, either literal-1 or identifier-1 must be specified.

7. The “identifier-1” option references an alphanumeric data item, the contents of which at the time the file is
OPENed will define the path and filename of the actual data file to be processed.

8. If the “literal-1” option is used on the ASSIGN clause, it defines the linkage of the COBOL file to an actual
operating system file as follows:

a. If an environment variable named “DD_literal-1” exists, its value will be treated as the full path/filename of
the file. If not, then …

b. If an environment variable named “dd_literal-1” exists, its value will be treated as the full path/filename of
the file. If not, then …

c. If an environment variable named “literal-1”exists, its value will be treated as the full path/filename of the
file. If not, then…

d. The literal itself will be treated as the full path/filename to the file.

This behavior will be influenced by the “filename-mapping” setting in the config file you are using when
compiling your programs. The behavior stated above applies only if “filename-mapping: yes” is in-effect. If
“filename-mapping: no” is used, only the last option (treating the literal itself as the full name of the file) is
possible.

9. The FILE STATUS or SORT STATUS clause (they are both equivalent and only one or the other, if any, should be
specified) is used to specify the name of a PIC 9(2) data item into which an I/O status code will be saved after
every I/O verb that is executed against the file. This does not actually allocate the data item – you still need to
allocate the item yourself somewhere in the DATA DIVISION.

10. Possible status codes that can be returned to a FILE STATUS data item are as follows:

Figure 4-15 – FILE STATUS Values

Status
Value

Meaning
Status
Value

Meaning

00 Success 39 Conflicting attribute

02 Success (Duplicate Record Key Written) 41 File already OPEN

05 Success (Optional File Not Found) 42 File not OPEN

07 Success (No Unit) 43 Read not done

10 End of file reached if READing forward or
beginning-of-file reached if READing
backward

 44 Record overflow

14 Out of key range 46 READ error

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-11

11. The LOCK and SHARING clauses define the conditions under which this file will be usable by other programs
executing concurrently with this one.

See Also…

Types of Files 1.3.3.5

User-defined Names 1.10

File Sharing 6.1.9.1

Record Locking 6.1.9.2

Handling End-of-File Conditions (AT END) 6.1.12.1

The OPEN Statement 6.4.29

The READ Statement 6.4.31

Compiler Switches Reference 8.1.2

GNU COBOL “config” Files 8.1.6

4.2.1.1. SELECT Without an “organization-clause”

A SELECT statement coded without an ORGANIZATION explicitly coded will be handled as if the following
ORGANIZATION clause had been specified:

ORGANIZATION IS RECORD BINARY SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 PADDING CHARACTER IS “ “

4.2.1.2. ORGANIZATION SEQUENTIAL Files

Figure 4-16 - SELECT “organization-options” For SEQUENTIAL Files

Files declared as ORGANIZATION RECORD
BINARY SEQUENTIAL will consist of
records with no explicit end-of-record
delimiter character sequences; records in
such files are “delineated” by a calculated
byte-offset (based on record length) into
the file .

1. The keyword “ORGANIZATION” is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word ORGANIZATION, so it
should be used in new programs.

2. These files cannot be prepared with any standard text-editing or word processing software as all such programs
will imbed delimiter characters at the end of records. Such files may contain either USAGE DISPLAY or USAGE
COMPUTATIONAL (of any variety) data since no character sequence can be accidentally interpreted as an end-of-
record delimiter.

3. Both fixed- and variable-length record formats are supported. Variable-length records will always be written in
their maximum size, however.

4. Specifying ORGANIZATION IS RECORD BINARY SEQUENTIAL is the same as specifying ORGANIZATION
SEQUENTIAL.

5. The ACCESS MODE IS SEQUENTIAL clause is optional because, if absent, it will be assumed anyway for this type of
file. The internal structure of RECORD BINARY SEQUENTIAL files is such that the data in those files can only be

[ORGANIZATION IS] RECORD BINARY SEQUENTIAL

[ACCESS MODE IS SEQUENTIAL]

21 Key invalid 47 OPEN INPUT denied

22 Attempt to duplicate key value 48 OPEN OUTPUT denied

23 Key not found 49 OPEN I-O denied

30 Permanent I/O error 51 Record locked

31 Inconsistent filename 52 End of page

34 Boundary violation 57 LINAGE specifications invalid

35 File not found 61 File sharing failure

37 Permission denied 91 File not available

38 Closed with lock

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-12

processed in a sequential manner; in order to read the 100
th

 record in such a file, for example, you first must read
records 1 through 99.

6. SEQUENTIAL files are processed using the CLOSE, COMMIT, DELETE, MERGE, OPEN, READ, REWRITE, SORT,
UNLOCK and WRITE statements.

See Also…

Types of Files 1.3.3.5

Storage Format of Data (USAGE) 5.2.1.11

Handling End-of-File Conditions (AT END) 6.1.12.1

The CLOSE Statement 6.4.7

The COMMIT Statement 6.4.8

The DELETE Statement 6.4.11

The MERGE Statement 6.4.25

The OPEN Statement 6.4.29

The READ Statement 6.4.31

The REWRITE Statement 6.4.36

The SORT Statement (File Sort) 6.4.40.1

The UNLOCK Statement 6.4.48

The WRITE Statement 6.4.50

4.2.1.3. ORGANIZATION LINE SEQUENTIAL Files

Figure 4-17 - SELECT "organization-options" for LINE SEQUENTIAL Files

Files declared as ORGANIZATION LINE
SEQUENTIAL will consist of records terminated by
an end-of-record delimiter character or character
sequence.

1. The keyword “ORGANIZATION” is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word ORGANIZATION, so it
should be used in new programs.

2. This is the only ORGANIZATION valid for files that are assigned to the PRINTER device.

3. These files could be prepared with any standard text-editing or word processing software capable of writing text
files. Such files should not contain any USAGE COMPUTATIONAL or BINARY (of any variety) data since such fields
could accidentally contain byte sequences that could be interpreted as an end-of-record delimiter.

4. Both fixed- and variable-length record formats are supported.

5. The end-of-record delimiter sequence will be X’0A’ (an ASCII line-feed character) or a X’0D0A’ (an ASCII carriage-
return/line-feed sequence).

6. The PADDING CHARACTER clause, while syntactically recognized, is currently non-functional.

7. When reading a LINE SEQUENTIAL file, records in excess of the size implied by the file’s FD will be truncated while
records shorter than that size will be padded to the right with SPACES.

8. The ACCESS MODE IS SEQUENTIAL clause is optional because, if absent, it will be assumed anyway for this type of
file. The internal structure of LINE SEQUENTIAL files is such that the data in those files can only be processed in a
sequential manner; in order to read the 100

th
 record in such a file, for example, you first must read records 1

through 99.

9. Files ASSIGNed to PRINTER or CONSOLE should be specified as ORGANIZATION LINE SEQUENTIAL.

10. LINE SEQUENTIAL files are processed using the CLOSE, COMMIT, DELETE, MERGE, OPEN, READ, REWRITE, SORT,
UNLOCK and WRITE statements.

See Also…

Types of Files 1.3.3.5

Storage Format of Data (USAGE) 5.2.1.11

The OPEN Statement 6.4.29

The READ Statement 6.4.31

[ORGANIZATION IS] LINE SEQUENTIAL

[ACCESS MODE IS SEQUENTIAL]

PADDING CHARACTER IS
literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-13

Handling End-of-File Conditions (AT END) 6.1.12.1

The CLOSE Statement 6.4.7

The COMMIT Statement 6.4.8

The DELETE Statement 6.4.11

The MERGE Statement 6.4.25

The REWRITE Statement 6.4.36

The SORT Statement (File Sort) 6.4.40.1

The UNLOCK Statement 6.4.48

The WRITE Statement 6.4.50

ORGANIZATION RELATIVE Files

Figure 4-18 - SELECT “organization options” For RELATIVE Files

RELATIVE files are files with an internal organization such
that records may be processed in a sequential manner
based upon their physical location in the file or in a
random manner by allowing records to be read, written
or updated by specifying the relative record number in
the file.

1. The keyword “ORGANIZATION” is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word ORGANIZATION, so it
should be used in new programs.

2. ORGANIZATION RELATIVE files cannot be assigned to CONSOLE, DISPLAY, LINE ADVANCING or PRINTER.

3. The RELATIVE KEY clause is optional only if ACCESS MODE SEQUENTIAL is specified.

4. While records in a ORGANIZATION RELATIVE file may be defined as having variable-length records, the file will be
structured in such a manner as to reserve the maximum possible space for each record.

5. An ACCESS MODE of SEQUENTIAL indicates that the records of the file will be processed in a sequential manner,
according to their physical sequence in the file.

An ACCESS MODE of RANDOM means that records will be processed in random sequence by specifying their
record number in the file every time the file is read or written.

A DYNAMIC ACCESS MODE indicates the program will switch back and forth between SEQUENTIAL and RANDOM
mode during execution. The file starts out initially in SEQUENTIAL mode when first OPENed but the program may
use the START verb to switch between the other two access modes.

6. The default ACCESS MODE is SEQUENTIAL.

7. The RELATIVE KEY data item is a numeric data item that cannot be a field within records of this file. Its purpose is
to return the current relative record number of a RELATIVE file that is being processed in SEQUENTIAL access
mode and to be a retrieval key that specifies the relative record number to be read or written when processing a
RELATIVE file in RANDOM access mode.

8. RELATIVE files are processed using the CLOSE, COMMIT, DELETE, MERGE, OPEN, READ, REWRITE, SORT, START,
UNLOCK and WRITE statements.

See Also…

Types of Files 1.3.3.5

Handling End-of-File Conditions (AT END) 6.1.12.1

The CLOSE Statement 6.4.7

The COMMIT Statement 6.4.8

The DELETE Statement 6.4.11

The MERGE Statement 6.4.25

The OPEN Statement 6.4.29

The READ Statement 6.4.31

The REWRITE Statement 6.4.36

The SORT Statement (File Sort) 6.4.40.1

The START Statement 6.2.41

The UNLOCK Statement 6.4.48

The WRITE Statement 6.4.50

[ORGANIZATION IS] RELATIVE

ACCESS MODE IS

[RELATIVE KEY IS identifier-1]

SEQUENTIAL
DYNAMIC
RANDOM

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-14

4.2.1.4. ORGANIZATION INDEXED Files

Figure 4-19 - SELECT “organization options” For INDEXED Files

INDEXED files, like RELATIVE files, may have their records processed either sequentially or in a random manner.
Unlike RELATIVE files, however, the actual location of a record in an INDEXED file is based upon the value(s) of one or
more alphanumeric fields within records of the file.

For example, an INDEXED file containing product data might use the product identification code as a RECORD KEY.
This means you may read, write or update the “A6G4328”th record or the “Z8X7723”th record directly, based upon
the product id value of those records!

1. The keyword “ORGANIZATION” is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word ORGANIZATION, so it
should be used in new programs.

2. ORGANIZATION INDEXED files cannot be assigned to CONSOLE, DISPLAY, LINE ADVANCING or PRINTER.

3. The specification of so-called “split keys”, while syntactically recognized (the “= / SOURCE IS” clauses), are not
currently supported by GNU COBOL.

4. An ACCESS MODE of SEQUENTIAL indicates that the records of the file will be processed in a sequential manner
with respect to the values of the RECORD KEY or an ALTERNATE RECORD KEY.

An ACCESS MODE of RANDOM means that records will be processed in random sequence by accessing the record
with specific RECORD KEY or ALTERNATE RECORD KEY values.

DYNAMIC ACCESS MODE allows the file will be processed either in RANDOM or SEQUENTIAL mode; the program
may switch between the two modes as needed. The START verb is used to make the switch between modes.

5. The default ACCESS MODE is SEQUENTIAL.

6. The PRIMARY KEY clause defines the field(s) within the record used to provide the primary access to records
within the file. No two records may have the same PRIMARY KEY field value.

7. The ALTERNATE RECORD KEY clause, if used, defines an additional field within the record that provides an
alternate means of directly accessing records or an additional field by which the file’s contents may be processed
sequentially. You have the choice of allowing records to have duplicate alternate key values, if necessary.

8. There may be multiple ALTERNATE RECORD KEY clauses, each defining an additional alternate key for the file.

9. INDEXED files are processed using the CLOSE, COMMIT, DELETE, MERGE, OPEN, READ, REWRITE, SORT, START,
UNLOCK and WRITE statements.

See Also…

Types of Files 1.3.3.5

Handling End-of-File Conditions (AT END) 6.1.12.1

The CLOSE Statement 6.4.7

The READ Statement 6.4.31

The REWRITE Statement 6.4.36

The SORT Statement (File Sort) 6.4.40.1

[ORGANIZATION IS] INDEXED

ACCESS MODE IS

RECORD KEY IS identifier-1 identifier-2

ALTERNATE RECORD KEY IS identifier-3 identifier-4

[WITH DUPLICATES]

=
SOURCE IS

=
SOURCE IS

SEQUENTIAL
DYNAMIC
RANDOM

…

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-15

The COMMIT Statement 6.4.8

The DELETE Statement 6.4.11

The MERGE Statement 6.4.25

The OPEN Statement 6.4.29

The START Statement 6.2.41

The UNLOCK Statement 6.4.48

The WRITE Statement 6.4.50

4.2.2. I-O-CONTROL Paragraph

Figure 4-20 - I-O-CONTROL Paragraph Syntax

The I-O-CONTROL Paragraph can be used
to optimize certain aspects of file
processing.

1. The SAME SORT AREA and SAME
SORT-MERGE AREA clauses are non-
functional. The SAME RECORD AREA
is functional, however.

2. The MULTIPLE FILE TAPE clause is
obsolete and is therefore recognized
but not functional.

3. The SAME RECORD AREA clause allows you to specify that multiple files should share the same input and output
memory buffers. These buffers can sometimes get quite large, and by having multiple files share the same buffer
memory you may significantly cut down the amount of memory the program is using (thus making “room” for
more procedural code or data). If you do use this feature, take care to ensure that no more than one of the
specified files are ever OPEN simultaneously.

I-O-CONTROL.

SAME AREA FOR file-name-1 …

MULTIPLE FILE TAPE CONTAINS

{ file-name-2 [POSITION integer-1] } …

.

RECORD
SORT
SORT-MERGE

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

11FEB2012 Version 4-16

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-1

5. DATA DIVISION

Figure 5-1 - General DATA DIVISION Format

The DATA DIVISION is used to define all data
that will be processed by a program. The
contents of the various sections are as follows:

FILE SECTION

Provides a detailed specification as to the
blocking characteristics and record layouts of
each SELECTed file.

WORKING-STORAGE SECTION

Definitions of the various internal data items
used by the program.

LOCAL-STORAGE SECTION

Similar to WORKING-STORAGE, but describes
data within a subprogram that will be
dynamically allocated and initialized
(automatically) each time the subprogram is
executed (WORKING-STORAGE is automatically
initialized only the 1

st
 time a subprogram is

executed).

LINKAGE SECTION

Describes data within a subprogram that serves
as input arguments to or output arguments
from the subprogram.

REPORT SECTION

Describes the layout of printed reports as well
as many of the functional aspects of the
generation of reports.

SCREEN SECTION

Describes the visual layout of entire screens.

1. Any SECTIONs that are used must be specified in the order shown. If no DATA DIVISION sections are needed, the
DATA DIVISION header itself may be omitted.

2. The REPORT SECTION is syntactically recognized but will – if used – be rejected as unsupported. GNU COBOL
does not support the RWCS

10
 (it does support the LINAGE clause in an FD, however).

3. LOCAL-STORAGE cannot be used in nested subprograms.

See Also…

A Sample GNU COBOL Screen 1.3.3.9

Defining Data Items 5.2

Defining Screens 5.2.2

10
 Report-Writer Control System

DATA DIVISION.

FILE SECTION.
file-or-sort/merge-file-description
constant-description
record-description

WORKING-STORAGE SECTION.
constant-description
77-level-data-description
01-level-data-description

LOCAL-STORAGE SECTION.
constant-description
77-level-data-description
01-level-data-description

LINKAGE SECTION.
constant-description
77-level-data-description
01-level-data-description

REPORT SECTION.
report-description
constant-description
01-level-data-description

SCREEN SECTION.
constant-description
screen-description

…
…

…

…

…

…
…

…

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-2

5.1. File Or Sort/Merge File Descriptions

Every file that has been SELECTed in the FILE-CONTROL paragraph must be described in the FILE SECTION of the DATA
DIVISION. Files destined for use as sort/merge work files must be described with a Sort/Merge File Description (SD)
while every other file is described with a File Description (FD). Each of these descriptions will be followed with at least
one Record Description.

Figure 5-2 - File Description (FD) and Sort Description (SD) Syntax

There must be
a detailed
description
for every file
SELECTed in
your program.
These
detailed
descriptions
will be coded
in the FILE
SECTION.

1. A file description for a file used as a sort/merge work file must be specified as an SD. The descriptions of all other
files must be specified as FDs.

2. The name specified as file-name-1 must exactly match the name specified on the file’s SELECT statement.

3. By specifying the EXTERNAL clause, the file description is capable of being shared between all programs executed
from the same execution thread, provided the file description is coded (with an EXTERNAL clause) in each
program requiring it. This sharing allows the file to be OPENed, read and/or written and CLOSEd in different
programs. This sharing applies to the record descriptions subordinate to the file description too.

4. By specifying the GLOBAL clause, the file description is capable of being shared between a program and any
nested subprograms within it, provided the file description is coded (with a GLOBAL clause) in each program

file-name-1 IS

RECORD

[CODE-SET IS alphabet-name-1]

EXTERNAL
GLOBAL

CONTAINS integer-1 [TO integer-2] CHARACTERS

IS VARYING IN SIZE
FROM integer-3 [TO integer-4] CHARACTERS

DEPENDING ON identifier-1

LINAGE IS LINES

WITH FOOTING AT

LINES AT TOP

LINES AT BOTTOM

integer-5
identifier-2

integer-8
Identifier-5

integer-6
identifier-3

integer-7
Identifier-4

.

BLOCK CONTAINS integer-9 [TO integer-10]

LABEL

DATA identifier-6 …

VALUE OF implementor-name-1 IS

[RECORDING MODE IS recording-mode-1]

identifier-8 …

literal-1
identifier-7

RECORD IS
RECORDS ARE

OMITTED
STANDARD

RECORD IS
RECORDS ARE

REPORT IS
REPORTS ARE

CHARACTERS
RECORDS

FD
SD

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-3

requiring it. This sharing allows the file to be OPENed, read and/or written and CLOSEd in different programs.
Separately compiled programs cannot share a GLOBAL file description, but they can share an EXTERNAL file
description. This sharing applies to the record descriptions subordinate to the file description too.

5. The RECORD CONTAINS and RECORD IS VARYING clauses are ignored (with a warning message issued) when used
with LINE SEQUENTIAL files. With other file organizations these mutually-exclusive clauses define the length of
data records within the file. The data item specified as identifier-1 must be defined within one of the record
descriptions of file-name-1.

6. The CODE-SET, clause allows a custom alphabet (defined in the SPECIAL-NAMES paragraph of the
CONFIGURATION SECTION) to be associated with a file. This clause is valid only when used with RECORD BINARY
SEQUENTIAL or LINE SEQUENTIAL files.

7. The REPORT IS clause is syntactically recognized but will cause an error since the Report Writer Control System
(RWCS) is not currently supported by GNU COBOL.

8. The BLOCK CONTAINS clause is syntactically recognized by the GNU COBOL compiler, but is currently non-
functional.

9. The LABEL RECORD, DATA RECORD, RECORDING MODE and VALUE OF clauses are obsolete. If used, they will
have no impact on the generated code. The identifiers specified on the DATA RECORD clause will be verified as
being defined within the program, but the compiler won’t care whether they are actually specified as records of
the file or not.

10. The LINAGE clause can only be specified for ORGANIZATION RECORD BINARY SEQUENTIAL or ORGANIZATION
LINE SEQUENTIAL files. It cannot be used within an SD. If used on an ORGANIZATION RECORD BINARY
SEQUENTIAL file, the definition of that file will be implicitly changed to LINE SEQUENTIAL.

11. The LINAGE clause is used to specify
the logical boundaries (in terms of
numbers of lines) of various areas on
a printed page, as shown in Figure
5-3.

This page structure – once defined -
can be automatically enforced by the
the WRITE statement.

Figure 5-3- LINAGE-specified Page Structure

12. The following special rules apply only to sort/merge work files (SDs):

a. Sort/merge work files should be assigned to DISK (or DISC).

b. SORTs and MERGEs will be performed in memory, if the amount of data being sorted allows.

c. Should actual disk work files be necessary due to the amount of data being SORTed or MERGEd, they will be
automatically allocated to disk in a folder defined by the TMPDIR, TMP or TEMP environment variables.
These disk files will be automatically purged upon SORT / MERGE termination. They will also be purged if the
program terminates abnormally before the SORT or MERGE finishes. Should you ever need to know,
temporary sort/merge work files will be named “cob*.tmp”.

Top Margin (unprintable)

Bottom Margin (unprintable) -

Page Body (printable)

LINES AT TOP t
Default = 0

LINES AT BOTTOM b
Default = 0

Page Footing area (if any)
WITH FOOTING AT f

Default = no page footer

LINAGE IS n LINES

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-4

d. If you specify a specific filename in the sort/merge work file’s SELECT, it will be ignored.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

Defining File Characteristics (SELECT) 4.2.1

Describing Record Layouts 5.1.1

The CLOSE Statement 6.4.7

The MERGE Statement 6.4.25

The OPEN Statement 6.4.29

The SORT Statement (File Sort) 6.4.40.1

The WRITE Statement 6.4.50

Execution-time Environment Variables 8.2.4

5.1.1. Record Descriptions

Every file description must be followed by at least one record description. If there are multiple record descriptions
present, the one with the longest length will define the size of the record buffer into which READ statements deliver
data read from the file and from which WRITE statements take the data to be written to the file. The various record
descriptions for a file description implicitly share that one common record buffer (thus, they provide different ways to
view the structure of data that can exist within the file). Record buffers can be shared between files by using the
SAME RECORD AREA clause within the I-O-CONTROL paragraph of the ENVIRONMENT DIVISION.

Record descriptions for all files take the form of 01-level data items that are coded immediately following the file
description. These data items are constructed according to all the rules specified for defining non SCREEN SECTION
data items, except that the VALUE clause may not be used.

See Also…

Sharing Record Buffers Between Files 4.2.2

Defining Records And Their Fields 5.2.1

5.2. Describing Data Items

GNU COBOL data items, like those of other COBOL implementations, are described in a hierarchical manner. This
accommodates the fact that data items frequently need to be able to be broken up into subordinate items. Take for
example, the following logical layout of a portion of a data item named “Employee”:

The “Employee” data item consists of two subordinate data items – an “Employee-Name” and an “Employment-
Dates” data item (presumably there would be a lot of others too, but we don’t care about them right now). As the
diagram shows, each of those data items are – in turn – broken down into subordinate data items. This hierarchy of
data items can get rather “deep”, and GNU COBOL has no problem dealing with it.

In GNU COBOL, data items that are broken down into other data items are referred to as group items, while those
that aren’t broken down are called elementary items. A group item that doesn’t belong to any other data item (the
one at the top of a chart like this one) is called a record. In the chart above, the names of all the elementary items are
shown in red (without a box around it), the names of all the group items are shown in blue (with a box around it) and
the record data item’s box is shaded yellow.

GNU COBOL uses the concept of a “level number” to indicate the level at which a data item occurs in a data structure
such as the example shown above. Then these data items are defined, they are all defined together with a number in
the range 1-49 specified in front of their names. Over the years, a convention has come to exist among COBOL

From-Date

Employee

Year

Last-Name First-Name Middle-Initial

Employee-Name Employment-Dates

To-Date

Month Day Year Month Day

additional data items …

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-5

programmers that level numbers are always coded as two-digit numbers – they don’t have to be specified as two-digit
numbers, but every example you see in this document will take that approach!

The record data item (the one at the top) always has a level number of 01. After that, you may assign level numbers
as you wish (01 – 02 – 03 – 04 - …, 01 – 05 – 10 – 15 - …, etc.) as you see fit, as long as you follow these simple rules:

1. Every data item at the same “level” of a hierarchy diagram such as the one you see here (if you were to make one
which you rarely – if ever – will once you get used to this concept) must have the same level number.

2. Every level uses a level number that is strictly greater than the one used in the prior (next higher) level.

3. You never use a level number greater than 49.

So, the definition of these data items in a GNU COBOL program would go something like this:

01 Employee
 05 Employee-Name
 10 Last-Name
 10 First-Name
 10 Middle-Initial
 05 Employment-Dates
 10 From-Date
 15 Year
 15 Month
 15 Day
 10 To-Date
 15 Year
 15 Month
 15 Day

The indentation is purely at the discretion of the programmer to make things easier for humans to read (the compiler
couldn’t care less). Historically, COBOL implementations that required Fixed Format Mode source programs required
that the “01” level begin in Area A and that everything else begin in Area B. GNU COBOL only requires that all data
definition syntax occur in columns 8-72. In Free Format Mode, of course, there aren’t even those limitations.

The coding example shown above is incomplete – it only describes the data item names and their hierarchical
relationships to one other. In addition, any valid data item definitions will also need to describe what type of data is
to be contained in a data item (Numeric? Alphanumeric? Alphabetic?), how much data can “fit” and a multitude of
other characteristics.

See Also…

Fixed-Format Source Code 1.5.1.1

Defining Data Items 5.2

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-6

5.2.1. Defining non-SCREEN SECTION Data Items

Figure 5-4 – Non-SCREEN SECTION Data Item Description Syntax

The syntax skeleton shown here describes the manner in which data items are defined in all DATA DIVISION sections
except the SCREEN SECTION.

1. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through 49 are used to define data
items that may be part of a hierarchical structure of data items. Level number 01 can also be used to define a
constant – an item with an unchangable value specified at compilation time. Level numbers 66, 77, 78 and 88 all
have special uses, and are covered in upcoming sections (the “See Also” table at the end of this section provides
links to those discussions).

2. Not specifying an identifier-name-1 or FILLER immediately after the level number has the same effect as if FILLER
were specified. A data item named FILLER cannot be referenced directly; these items are generally used to
specify an unused portion of the total storage allocated to a group item.

3. By specifying the EXTERNAL clause, the data item is capable of being shared between all programs executed from
the same execution thread, provided the data item is coded (with an EXTERNAL clause) in each program requiring
it.

4. By specifying the GLOBAL clause, the data item is capable of being shared between a program and any nested
subprograms within it, provided the data item is coded (with a GLOBAL clause) in each program requiring it.

5. The EXTERNAL clause may only be specified at the 77 or 01 level.

6. An EXTERNAL item must have a data name (i.e. identifier-1) and that name cannot be FILLER.

level-number IS

[ANY LENGTH]

[BASED]

[BLANK WHEN ZERO]

[JUSTIFIED RIGHT]

OCCURS integer-1 [TO integer-2] TIMES [DEPENDING ON identifier-2]

[INDEXED BY identifier-4]

[PICTURE picture-string]

[REDEFINES identifier-2]

[RENAMES identifier-3 [THRU|THROUGH identifier-4]

SIGN IS [SEPARATE CHARACTER]

SYNCHRONIZED

[USAGE IS data-item-usage]

[VALUE IS [ALL] literal-1]

.

ASCENDING
DESCENDING KEY IS identifier-3

LEADING
TRAILING

LEFT
RIGHT

Identifier-1

FILLER
EXTERNAL
GLOBAL

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-7

7. EXTERNAL cannot be combined with GLOBAL, REDEFINES or BASED.

8. Every data item description must be terminated with a period.

See Also…

Describing Record Layouts 5.1.1

Defining Screens 5.2.2

Defining Level-01 Constants 5.2.3

Defining Level-66 RENAMES Data Items 5.2.4

Defining Level-77 Data Items 5.2.5

Defining Level 78 Constants 5.2.6

Defining Level-88 Condition Names 5.2.7

5.2.1.1. ANY LENGTH Clause

1. Data items declared with the ANY LENGTH attribute have no fixed compile-time length.
Such items may only be defined in the LINKAGE SECTION of a subprogram as they may only
serve as subroutine argument descriptions. ANY LENGTH items must have a PICTURE
clause that specifies exactly one A, X or 9 symbol.

2. The ANY LENGTH and BASED clauses cannot be used together in the same data item description.

5.2.1.2. BASED Clause

1. Data items declared with BASED are allocated no storage at compilation time. At run-time, the
ALLOCATE or SET ADDRESS verbs are used to allocate space for and (optionally) initialize such
items.

2. The BASED and ANY LENGTH clauses cannot be used together in the same data item description.

3. The BASED clause may only be used on level 01 and level 77 data items.

See Also…

The ALLOCATE Statement 6.4.3

The SET ADDRESS Statement 6.4.39.3

5.2.1.3. BLANK WHEN ZERO Clause

1. The BLANK WHEN ZERO clause can only be used with a PIC 9 USAGE DISPLAY data
item; it will cause that item’s value to be automatically transformed into SPACES if a
value of 0 is ever MOVEd to the item.

5.2.1.4. JUSTIFIED Clause

1. The JUSTIFIED RIGHT clause, valid only on an alphabetic (PIC A) or alphanumeric
(PIC X) data item, will cause values shorter than the length of the data item to be
right-justified and space-filled when they are MOVEd into the data item (the
default behavior is to left-justify and space fill).

2. The word JUSTIFIED may be abbreviated as JUST.

ANY LENGTH

BASED

BLANK WHEN ZERO

JUSTIFIED RIGHT

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-8

5.2.1.5. OCCURS Clause

1. The OCCURS
clause is used
to create a
data
structure
called a
table

11
 that

repeats multiple times. For example:

05 QUARTLY-REVENUE OCCURS 4 TIMES PIC 9(7)V99.

Will allocate the following:

 QUARTLY-REVENUE (1) QUARTLY-REVENUE (2) QUARTLY-REVENUE (3) QUARTLY-REVENUE (4)

Each occurrence is referenced using the subscript syntax (a numeric literal, arithmetic expression or numeric
identifier enclosed within parenthesis) shown in the diagram. The OCCURS clause may be used at the group level
too, in which case the entire group structure repeats, as follows:

05 X OCCURS 3 TIMES.
 10 A PIC X(1).
 10 B PIC X(1).
 10 C PIC X(1).

 X (1) X (2) X (3)

A (1) B (1) C (1) A (2) B (2) C (2) A (3) B (3) C (3)

2. The optional DEPENDING ON clause can be added to an OCCURS to create a variable-length table. Such tables
will be allocated out to the maximum size specified as integer-2. At execution time the value of identifier-2 will
determine how many of the table elements are accessible.

3. See the documentation of the SEARCH, SEARCH ALL and SORT verbs for explanations of the KEY and INDEXED BY
clauses.

4. The OCCURS clause cannot be specified in a data description entry that has a level number of 01, 66, 77, or 88.

5.2.1.6. PICTURE Clause

1. The word PICTURE may be abbreviated as PIC.

2. The PICTURE clause defines the class (numeric, alphabetic or alphanumeric) of
the data that may be contained by the data item being defined. A PICTURE also
(sometimes in conjunction with USAGE) defines the amount of storage reserved for the data item. The three
basic class-specification PICTURE symbols have the following uses:

Figure 5-5 - Data Class-Specification PICTURE Symbols (A/X/9)

Basic
Symbol

Meaning and Usage

9 Defines a spot reserved for a single decimal digit. The actual amount of storage occupied will
depend on the specified USAGE.

A Defines a place reserved for a single alphabetic character (“A”-“Z”, “a”-“z”). Each “A” represents a
single byte of storage.

X Defines a place reserved for a single character of storage. Each “X” represents a single byte of
storage.

These three symbols are used repeatedly in a PICTURE clause to define how many of each class of data may be
contained within the field. For example:

PIC 9999 Allocates a data item that can store four-digit positive numbers (we’ll see shortly how negative

11
 Other programming languages with which you might be familiar refer to this sort of structure as an array.

OCCURS integer-1 [TO integer-2] TIMES [DEPENDING ON identifier-2]

[INDEXED BY identifier-4]

ASCENDING
DESCENDING KEY IS identifier-3

PICTURE picture-string

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-9

values can be accounted for). If the USAGE of the field is DISPLAY (the default), four bytes of
storage will be allocated and each byte may contain the character “0”, “1”, “2”, … , “8” or “9”.
There is no run-time enforcement of the fact that only digits are allowed. A compilation-time
WARNING will be issued if literal value that violates the digits-only rule is MOVEd to the field. A
run-time violation is detectable using a class condition test.

PIC 9(4) Identical to the above – a repeat count enclosed within parenthesis can be used with any PICTURE
symbols that allows repetition.

PIC X(10) This data item can hold a string of any ten characters.

PIC A(10) This data item can hold a string of any ten letters. There is no enforcement of the fact that only
letters are allowed, but a violation is detectable via a class condition test.

PIC AA9(3)A This is exactly the same as specifying X(6), but it documents the fact that values should be two
letters followed by 3 digits followed by a single letter. There is no enforcement and no capability
of detecting violations other than a “brute force” check by character position.

Data items containing “A” or “X” PICTURE symbols cannot be used in arithmetic calculations.

In addition to the above Figure 5-6 shows the numeric option PICTURE symbols that may be used with “PIC 9”
Data Items

Figure 5-6 - Numeric Option PICTURE Symbols (P/S/V)

Numeric
Option
Symbol

Meaning and Usage

P Defines an implied digit position that will be considered to be a 0 when the data item is referenced
at run-time. This symbol is used to allow data items that will contain very large values to be
allocated using less storage by assuming a certain number of trailing zeros (one per “P”) to exist at
the end of values.

All computations and other operations performed against such a data item will behave as if the
zeros were actually there.

When values are stored into such a field they will have the digit positions defined by the “P”
symbols stripped from the values as they are stored.

For example, let’s say you need to allocate a data item that contains however many millions of
dollars of revenue your company has in gross revenues this year:

01 Gross-Revenue PIC 9(9).

In which case 9 bytes of storage will be reserved. The values 000000000 thru 999999999 will
represent the gross-revenues. But, if only the millions are tracked (meaning the last six digits are
always going to be 0), you could define the field as:

01 Gross-revenue PIC 9(3)P(6).

Whenever Gross-Revenue is referenced in the program, the actual value in storage will be treated
as if each P symbol (6 of them, in this case) were a zero.

If you wanted to store the value 128 million into that field, you would do so as if the “P”s were
“9”s:

MOVE 128000000 TO Gross-Revenue.

S This symbol, which if used must be the very first symbol in the PICTURE value, indicates that
negative values are possible for this data item. Without an “S”, any negative values stored into this
data item via a MOVE or arithmetic statement will have the negative sign stripped from it (in effect
becoming the absolute value).

V This symbol is used to define where an implied decimal-point (if any) is located in a numeric item.
Just as there may only be a single decimal point in a number so may there be no more than one
“V” in a PICTURE. Implied decimal points occupy no space in storage – they just specify how values
are used. For example, if the value “1234” is in storage in a field defined as PIC 999V9, that value
would be treated as 123.4 in any statements that referenced it.

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-10

3. GNU COBOL supports all standard COBOL PICTURE editing symbols, namely “$”, comma, asterisk (*), decimal-
point, CR, DB, + (plus), - (minus), “B”, “0” (zero) and “/”, as follows:

Figure 5-7 - Numeric Editing PICTURE Symbols

Editing
Symbol

Meaning and Usage

- (minus) This symbol must be used either at the very beginning of a PICTURE or at the very end. If “-“ is used, none
of “+”, “CR” or “DB” may be used. It is used to edit numeric values.

Multiple consecutive “-“ symbols are allowed only at the very beginning of the field. This is called a
floating minus sign.

Each “-“ symbol will count as one character position in the size of the data item.

If only a single “-“ symbol is specified, that symbol will be “replaced” by a “-“ if the value moved to the
field is negative, or a SPACE otherwise.

If a floating minus sign is used, think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “-“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “-“ and scan the edited value

back to the left from that point until you come to a “0” that has nothing but “0” characters to the left of
it.

3. Replace that “0” with a “-“ if the value moved to the field is negative or a SPACE otherwise.
4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

17 -999 b017

-17 -999 -017

265 -----99 bbbb265

-265 -----99 bbb-265

51 999- 051b

-51 999- 051-

$
12

 This symbol must be only be used at the very beginning of a PICTURE except that a “+” or “-“ may appear
to the left of it. It is used to edit numeric values.

Multiple consecutive “$“ symbols are allowed. This is called a floating currency symbol.

Each “$“ symbol will count as one character position in the size of the data item.

If only a single “$“ symbol is specified, that symbol will be inserted into the edited value at that position
unless there are so many significant digits to the field value that the position occupied by the “$” is needed
to represent a leading non-zero digit. In such cases, the “$” will be treated as a “9”.

If a floating currency sign is used, think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “$“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “$“ and scan the edited value

back to the left from that point until you come to a “0” that has nothing but “0” characters to the left of
it.

3. Replace that “0” with a “$“.
4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

17 $999 $017

265 $$$$$99 bbb$265

12
 The default currency sign used is “$”. Other countries use different currency signs. The SPECIAL-NAMES paragraph allows any

symbol to be defined as a currency symbol. If the currency sign is defined to the character ‘#’, for example, then you would
use the ‘#’ character as a PICTURE editing symbol.

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-11

Editing
Symbol

Meaning and Usage

* (asterisk) This symbol must be only be used at the very beginning of a PICTURE except that a “+” or “-“ may appear
to the left of it. It is used to edit numeric values.

Multiple consecutive “*“ symbols are not only allowed, but are the typical usage. This is called a floating
check protection symbol.

Each “*“ symbol will count as one character position in the size of the data item.

Think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “*“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “*“ and scan the edited value

back to the left from that point until you come to a “0” that has nothing but “0” characters to the left of
it.

3. Replace that “0” with a “*“.
4. Replace all remaining “0” characters to the left of that position by “*” also.

An example:

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

265 *****99 ****265

,
(comma)

13

Each comma (,) in the PICTURE string represents a character position into which the character “,” will be
inserted. This character position is counted in the size of the item. The “,” symbol is a “smart symbol”
capable of masquerading as the floating symbol to its left and right should there be insufficient digits of
precision to the numeric value being edited to require the insertion of a “,” character.

For example (the symbol b denotes a space):

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

17 $$,$$$,$99 bbbbbbb$17

265 $$,$$$,$99 bbbbbb$265

1456 $$,$$$,$99 bbbb$1,456

. (period)
13

 This symbol inserts a decimal point into the edited value at the point where an implied decimal point exists
in the value. It is used to edit numeric values. Note that the period specified at the end of every data
item definition IS NOT treated as an editing symbol!

An example:

01 Edited-Value PIC 9(3).99.
01 Payment PIC 9(3)V99 VALUE 152.19.
...
 MOVE Payment TO Edited-Value.
 DISPLAY Edited-Value.

Will display 152.19

/ (slash) This symbol – usually used when editing dates for printing – inserts a “/” character into the edited value.
The inserted “/” character will occupy a byte of storage in the edited result.

An example:

01 Edited-Date PIC 99/99/9999.
…
 MOVE 08182009 TO Edited-Date.
 DISPLAY Edited-Date.

The displayed value will be 08/18/2009.

13
 If DECIMAL-POINT IS COMMA is specified in the SPECIAL-NAMES paragraph, the meanings and usages of the “.” and “,”

characters will be reversed

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-12

Editing
Symbol

Meaning and Usage

+ (plus) This symbol must be used either at the very beginning of a PICTURE or at the very end. If “+“ is used, none
of “-”, “CR” or “DB” may be used. It is used to edit numeric values.

Multiple consecutive “+“ symbols are allowed only at the very beginning of the field. This is called a
floating plus sign.

Each “+“ symbol will count as one character position in the size of the data item. If only a single “+“
symbol is specified, that symbol will be replaced by a “-“ if the value moved to the field is negative, or a “+”
otherwise.

If a floating plus sign is used, think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “+“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “+“ and scan the edited value

back to the left from that point until you come to a “0” that has nothing but “0” characters to the left
of it.

3. Replace that “0” with a “-“ if the value moved to the field is negative or a “+” otherwise.
4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

If this value… …is moved to a field with
this PICTURE…

… this value in storage will
result:

17 +999 +017

-17 +999 -017

265 +++++99 bbb+265

-265 +++++99 bbb-265

51 999+ 051+

-51 999- 051-

0 (zero) This symbol inserts a “0” character into the edited value. The inserted “0” character will occupy a byte of
storage in the edited result.
An example:

01 Edited-Phone-Number PIC 9(3)B9(3)B9(4).
…
 MOVE 5185551212 TO Edited-Phone-Number.
 DISPLAY Edited-Phone-Number.

The displayed value will be 518 555 1212.

B This symbol inserts a SPACE character into the edited value. The inserted SPACE character will occupy a
byte of storage in the edited result.

An example:

01 Edited-Phone-Number PIC 9(3)B9(3)B9(4).
…
 MOVE 5185551212 TO Edited-Phone-Number.
 DISPLAY Edited-Phone-Number.

The displayed value will be 518 555 1212.

CR This symbol must be used only at the very end of a PICTURE. If “CR“ is used, none of “-”, “+” or “DB” may
be used. It is used to edit numeric values.

Multiple “CR“ symbols are not allowed in one PICTURE clause.

A “CR“ symbol will count as two character positions in the size of the data item.

If the value moved into the field is negative, the characters “CR” will be inserted into the edited value,
otherwise two SPACES will be inserted.

Some examples (the symbol b denotes a space):

This value… …is moved to a field with
this PICTURE…

…resulting in this value in
storage:

17 99CR 17bb

-17 99CR 17CR

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-13

Editing
Symbol

Meaning and Usage

DB This symbol must be used only at the very end of a PICTURE. If “DB“ is used, none of “-”, “+” or “CR” may
be used. It is used to edit numeric values.

Multiple “DB“ symbols are not allowed in one PICTURE clause.

A “DB“ symbol will count as two character positions in the size of the data item.

If the value moved into the field is negative, the characters “DB” will be inserted into the edited value,
otherwise two SPACES will be inserted.

Some examples (the symbol b denotes a space):

This value… …is moved to a field with
this PICTURE…

…resulting in this value in
storage:

17 99DB 17bb

-17 99DB 17DB

Z This symbol must be only be used at the very beginning of a PICTURE except that a “+” or “-“ may appear
to the left of it. It is used to edit numeric values.

Multiple consecutive “Z“ symbols are not only allowed, but are the typical manner in which this editing
symbol is used. This is called a floating zero suppression.

Each “Z“ symbol will count as one character position in the size of the data item.

Think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “Z“ were actually a “9”.
2. Locate the digit in the edited result that corresponds to the right-most “Z“ and scan the edited value

back to the left from that point until you come to a “0” that has nothing but “0” characters to the left
of it.

3. Replace that “0” with a SPACE.
4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

This value… …is moved to a field with
this PICTURE…

…resulting in this value in
storage:

17 Z999 b017

265 ZZZZZ99 bbbb265

No more than one editing symbol may be used in a floating manner in the same PICTURE clause.

4. Numeric data items containing editing symbols are referred to as numeric edited fields. Such data items may
receive values in the various arithmetic statements but may not be used as sources of data in those same
statements. The statements in question are ADD, COMPUTE, DIVIDE, MULTIPLY and SUBTRACT.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

Storage Format of Data (USAGE) 5.2.1.11

Class Tests 6.1.4.2.2

The ADD Statement 6.4.2

The COMPUTE Statement 6.4.9

The DIVIDE Statement 6.4.13

The MULTIPLY Statement 6.4.27

The SUBTRACT Statement 6.4.44

5.2.1.7. REDEFINES Clause

1. The REDEFINES clause causes identifier-1 (the data item in which the
REDEFINES clause is specified) to occupy the same physical storage space as
identifier-2, so that storage may be defined in a different manner with a
(probably) different structure. The following must all be true in order to use REDEFINES:

a. The level number of identifier-2 must be the same as that of identifier-1.

b. The level number of identifier-2 (and identifier-1) cannot be 66, 78 or 88.

REDEFINES identifier-2

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-14

c. If “n” represents the level number of identifier-2 (and identifier-1), then no other data items with level
number “n” may be defined between identifier-1 and identifier-2.

d. The total allocated size of identifier-1 must be the same as the total allocated size of identifier-2.

e. No OCCURS clause may be defined on identifier-2. There may – however – be items defined with OCCURS
clauses subordinate to identifier-2.

f. No VALUE clause may be defined on identifier-2. No data items subordinate to identifier-2 may have VALUE
clauses, with the exception of level-88 condition names.

5.2.1.8. RENAMES Clause

The RENAMES clause regroups previously
defined items by specifying alternative, possibly
overlapping, groupings of elementary data items
in a record.

See Also…

Defining Level-66 RENAMES Data Items 5.2.4

5.2.1.9. SIGN Clause

1. The SIGN clause, allowable only for USAGE
DISPLAY numeric data items, specifies how an “S”
symbol will be interpreted in a data item’s
PICTURE clause. Without the SEPARATE
CHARACTER option, the sign of the data item’s
value will be encoded by transforming the last (TRAILING) or first (LEADING) digit as follows:

Figure 5-8 - Sign-Encoding Characters

First/Last
Digit

Encoded Value
For POSITIVE

Encoded Value
For NEGATIVE

0 0 p

1 1 q

2 2 r

3 3 s

4 4 t

5 5 u

6 6 v

7 7 w

8 8 x

9 9 y

If the SEPARATE CHARACTER clause is used, then an actual “+” or “-“ sign will be inserted into the field’s value as
the first (LEADING) or last (TRAILING) character.

2. When SEPARATE CHARACTER is specified, the “S” symbol in the data item’s PICTURE must be counted when
determining the data item’s size.

See Also…

Defining a Data Item’s PICTURE 5.2.1.6

RENAMES identifier-3 [THRU|THROUGH identifier-4]

SIGN IS [SEPARATE CHARACTER]
LEADING
TRAILING

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-15

5.2.1.10. SYNCHRONIZED Clause

1. The SYNCHRONIZED clause (which may be abbreviated as SYNC)
optimizes the storage of binary numeric items to store them in such
a manner as to make it as fast as possible for the CPU to fetch them.
This synchronization is performed as follows:

a. If the binary item occupies one byte of storage, no synchronization is performed.

b. If the binary item occupies two bytes of storage, the binary item is allocated at the next half-word boundary.

c. If the binary item occupies four bytes of storage, the binary item is allocated at the next word boundary.

d. If the binary item occupies four bytes of storage, the binary item is allocated at the next word boundary.

Figure 5-9 provides an example of a group item’s storage allocation with and without using SYNCHRONIZED.

Figure 5-9 - Effect of the SYNCHRONIZED Clause

The grey blocks represent the unused “slack” bytes that are allocated in the Group-Item-2 structure because of
the SYNC clauses.

The LEFT and RIGHT options to the SYNCHRONIZED clause are recognized for syntactical compatibility with other
COBOL implementations, but are otherwise non-functional.

5.2.1.11. USAGE Clause

1. The following table summarizes the various possible USAGE
specifications:

Figure 5-10 - Summary of USAGE Specifications

USAGE Range of Possible Values
Format

(See note #2,#4)

Allows
Negative
Values?

(See note #3)

Used w/
PICTURE?

BINARY
Defined by the quantity of “9”s in the PICTURE and the

presence or absence of an “S” in the PICTURE
Compatible Binary

Integer
If PICTURE

contains “S”
Yes

A C EB D F

A C EB D F

01 Group-Item-1.
05 A PIC X(1).
05 B USAGE BINARY-SHORT.
05 C PIC X(2).
05 D USAGE BINARY-LONG.
05 E PIC X(3).
05 F USAGE BINARY-DOUBLE.

01 Group-Item-2.
05 A PIC X(1).
05 B SYNC USAGE BINARY-SHORT.
05 C PIC X(2).
05 D SYNC USAGE BINARY-LONG.
05 E PIC X(3).
05 F SYNC USAGE BINARY-DOUBLE.

Group-Item-1
Group-Item-2

Word
½

Word
½

Word
½

Word
½

Word
½

Word
½

WordWord Word Word Word Word Word

Bytes Bytes Bytes

Double
Word

Double
Word

Double
Word

Double
Word

SYNCHRONIZED
LEFT
RIGHT

USAGE IS data-item-usage

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-16

USAGE Range of Possible Values
Format

(See note #2,#4)

Allows
Negative
Values?

(See note #3)

Used w/
PICTURE?

BINARY-C-LONG [SIGNED] Same as BINARY-DOUBLE SIGNED

BINARY-C-LONG UNSIGNED Typically 0 to 4,294,967,295 Native Binary Integer No – see #3 No

BINARY-CHAR [SIGNED] -128 to 127 Native Binary Integer Yes No

BINARY-CHAR UNSIGNED 0 to 255 Native Binary Integer No – see #3 No

BINARY-DOUBLE [SIGNED]
-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
Native Binary Integer Yes No

BINARY-DOUBLE UNSIGNED 0 to 18,446,744,073,709,551,615 Native Binary Integer No – see #3 No

BINARY-INT Same as BINARY-LONG SIGNED

BINARY-LONG [SIGNED] -2,147,483,648 – 2,147,483,647 Native Binary Integer Yes No

BINARY-LONG UNSIGNED 0 to 4,294,967,295 Native Binary Integer No – see #3 No

BINARY-LONG-LONG Same as BINARY-DOUBLE SIGNED

BINARY-SHORT [SIGNED] -32,768 to 32,767 Native Binary Integer Yes No

BINARY-SHORT UNSIGNED 0 to 65,535 Native Binary Integer No – see #3 No

COMPUTATIONAL Same as BINARY

COMPUTATIONAL-1 Same as FLOAT-SHORT

COMPUTATIONAL-2 Same as FLOAT-LONG

COMPUTATIONAL-3 Same as PACKED-DECIMAL

COMPUTATIONAL-4 Same as BINARY

COMPUTATIONAL-5
Depends on number of “9”s in PICTURE and the ”binary-
size” setting of the configuration file used to compile the

program
Native Binary Integer

If PICTURE
contains “S”

Yes

COMPUTATIONAL-6
Defined by the quantity of “9”s in the PICTURE and the

presence or absence of an “S” in the PICTURE (see #1)
Unsigned Packed

Decimal14
No Yes

COMPUTATIONAL-X

If used with “PIC X”, allocates one byte of storage per “X”;
range of values is 0 to max storable in that many bytes

If used with “PIC 9”, range of values depends on number
of “9”s in PICTURE

Native unsigned (X)
or signed (9) Binary

If PICTURE 9
and contains

“S”
Yes

DISPLAY

Depends on PICTURE – One character15 per X, A, 9, period,
$, Z, 0, *, S (if SEPARATE CHARACTER specified), +, - or B
symbol in PICTURE; Add 2 more bytes if DB or CR symbol

used

Characters16
If PICTURE

contains “S”
Yes

14
 No half-byte is reserved for a sign as is the case with PACKED-DECIMAL

15
 In this context, one character is the same as one byte, unless you’ve built yourself a GNU COBOL system that uses Unicode

(unlikely), in which case 1 character = two bytes.

16
 This is the most reliable format, combined with a ORGANIZATION IS RECORD BINARY SEQUENTIAL file format to use for data

that is being shared between different computer systems because values encoded in this format may be represented exactly,
without the possibility of having special control-characters (which could disrupt FTP transmissions or confuse run-time library
software) as part of the data.

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-17

USAGE Range of Possible Values
Format

(See note #2,#4)

Allows
Negative
Values?

(See note #3)

Used w/
PICTURE?

FLOAT-DECIMAL-1617 -9.999999999999999×10384 to 9.999999999999999×10384
Native IEEE 754

Decimal6417 Floating-
point

Yes No

FLOAT-DECIMAL-3417
-9.999999999999999999999999999999999×106144 to

9.999999999999999999999999999999999×106144

Native IEEE 754
Decimal12817

Floating-point
Yes No

FLOAT-LONG18
Approximately

-1.797693134862316×10308 to
1.797693134862316×10308

Native IEEE 754
Binary6418 Floating-

point
Yes No

FLOAT-SHORT18
Approximately

-3.4028235×1038 to
3.4028235×1038

Native IEEE 754
Binary3218

Yes No

INDEX 0 to maximum address possible (32 or 64 bits) Native Binary Integer No No

NATIONAL USAGE NATIONAL, while syntactically recognized, is not supported by GNU COBOL

PACKED-DECIMAL
Defined by the quantity of “9”s in the PICTURE and the

presence or absence of an “S” in the PICTURE (see #1)
Signed Packed

Decimal
If PICTURE

contains “S”
No

POINTER 0 to maximum address possible (32 or 64 bits) Native Binary Integer No No

PROGRAM-POINTER 0 to maximum address possible (32 or 64 bits) Native Binary Integer No No

SIGNED-INT Same as BINARY-LONG SIGNED

SIGNED-LONG Same as BINARY-DOUBLE SIGNED

SIGNED-SHORT Same as BINARY-SHORT SIGNED

UNSIGNED-INT Same as BINARY-LONG UNSIGNED

UNSIGNED-LONG Same as BINARY-DOUBLE UNSIGNED

UNSIGNED-SHORT Same as BINARY-SHORT UNSIGNED

2. Binary data (integer or floating-point) can be stored in either a “Big-Endian” or “Little-Endian” form.

Big-endian data allocation calls for the bytes that comprise a binary item to be allocated such that the least-
significant byte is the right-most byte. For example, a four-byte binary item having a value of decimal 20 would
be big-endian allocated as 00000014 (shown in hexadecimal notation).

Little-endian data allocation calls for the bytes that comprise a binary item to be allocated such that the least-
significant byte is the left-most byte. For example, a four-byte binary item having a value of decimal 20 would be
little-endian allocated as 14000000 (shown in hexadecimal notation).

All CPUs are capable of “understanding” big-endian format, which makes it the “most-compatible” form of binary
storage across computer systems.

17
 The USAGE specifications FLOAT-DECIMAL-16 and FLOAT-DECIMAL-34 will encode data using IEEE 754 “Decimal64” and

“Decimal128” format, respectively. The former allows for up to 16 digits of exact precision while the latter offers 34. The
phrase “exact precision” is used because the traditional binary renderings of decimal real numbers in a floating-point format
(FLOAT-LONG and FLOAT-SHORT, for example) only yield an approximation of the actual value because many decimal
fractions cannot be precisely rendered in binary. The Decimal64 and Decimal128 renderings, however, render decimal real
numbers in encoded decimal form in much the same way that PACKED-DECIMAL renders a decimal integer in digit-by-digit
decimal form. The exact manner in which this rendering is performed is complex (Wikipedia has an excellent article on the
subject – just search for “Decimal64”), and in fact the IEEE 754 standard allows Decimal64 and Decimal128 encodings to be
performed in two ways. GNU COBOL stores FLOAT-DECIMAL-16 and FLOAT-DECIMAL-34 data items using Native byte
ordering techniques (see #2).

18
 The USAGE specifications FLOAT-LONG and FLOAT-SHORT use the IEEE 754 “Binary64” and “Binary32: formats, respectively.

These are binary encodings of real decimal numbers, and as such cannot represent every possible value between the minimum
and maximum values in the range for those USAGEs. Wikipedia has an excellent artuicle on the Binary64 and Binary32
encoding schemes – just search on “Binary32” or “Binary64”. GNU COBOL stores FLOAT-LONG and FLOAT-SHORT data items
using Native byte ordering techniques (see #2).

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-18

Some CPUs – such as the Intel/AMD i386/x64 architecture processors such as those used in most Windows PCs –
prefer to process binary data stored in a little-endian format. Since that format is more efficient on those
systems, it is referred to as the “native” binary format.

On a system supporting only one format of binary storage (generally, that would be big-endian), the terms “most-
efficient” format and “native format” are synonymous.

3. Data items that have the UNSIGNED attribute explicitly coded, or DISPLAY/PACKED-DECIMAL/COMP-5/COMP-X
items that do not have an “S” symbol in their PICTURE clause cannot preserve negative values that may be stored
into them. Storing a negative value into such a field will actually result in the sign being stripped, essentially
saving the absolute value in the data item.

4. Packed-decimal (i.e. USAGE PACKED-DECIMAL, COMP-3 or COMP-6) data is stored as a series of bytes such that
each byte contains two 4-bit fields, referred to as “nibbles” (since they comprise half a “byte”) with each nibble
representing a “9” in the PICTURE and each holding a single decimal digit encoded as its binary value (0 = 0000, 1
= 0001, … , 9 = 1001). The last byte of a PACKED-DECIMAL or COMP-3 data item will always have its left nibble
corresponding to the last “9” in the PICTURE and its right nibble reserved as a sign indicator. This sifgn indicator is
always present regardless of whether or not the PICTURE included an “S” symbol. The first byte of the data item
will contain an unused left nibble if the PICTURE had an even number of “9” symbols in it. The sign indicator will
have a value of a hexadecimal A thru F. Traditional packed decimal encoding rules call for hecadecimal values of
C, A, F and E in the sign nibble to indicate a positive value and B or D to represent a negative value (hexadecimal
digits 0-9 are undefined). Testing with a Windows MinGW/GNU COBOL implementation shows that – in fact – hex
digit D represents a negative number and any other hexadecimal digit denoting a positive number. Therefore, a
PIC S9(3) COMP-3 packed-decimal field with a value of -15 would be stored internally as a hexadecimal 015D in
GNU COBOL. If you attempt to store a negative number into a packed decimal field that has no “S” in its PICTURE,
the absolute value of the negative number will actually be stored. A USAGE of COMP-6 does not allow for
negative values, therefore no sign nibble will be allocated. A USAGE COMP-6 data item containing an odd
number of “9” symbols in its PICTURE will leave its leftmost nibble unused.

5. A USAGE clause specified at the group item level will apply that USAGE to all subordinate data items, except those
that themselves have a USAGE clause.

See Also…

GNU COBOL “config” Files 8.1.6

5.2.1.12. VALUE Clause

1. The VALUE clause is ignored on EXTERNAL data items or on any data
items defines as subordinate to an EXTERNAL data item.

2. The VALUE clause may not be used anywhere in the description of an
01 item serving as an FD or SD record description.

3. VALUE specifies an initial compilation-time value that will be assigned to the storage occupied by the data item in
the program object code generated by the compiler. If the optional “ALL” clause is used, it may only be used with
an alphanumeric literal value; the value will be repeated as needed to completely fill the data item. Here are
some examples with and without ALL:

PIC X(5) VALUE “A” *> will have the value “A”,SPACE,SPACE,SPACE,SPACE

PIC X(5) VALUE ALL “A” *> will have the value “A”,”A”,”A”,”A”,”A”

PIC 9(3) VALUE 1 *> will have the value 001

PIC 9(3) VALUE ALL “1” *> will have the value 111

4. Giving a table an initial, compile-time value is one of the trickier aspects of COBOL data definition. There are
basically three standard techniques and a fourth that people familiar with other COBOL implementations but new
to GNU COBOL may find interesting. So, here are the three “standard” approaches:

a. Don’t bother worrying about it at compile-time. Use the INITIALIZE statement to initialize all data item
occurrences in a table (at run-time) to their data-type-specific default values (numerics: 0, alphabetic and
alphanumerics: SPACES).

VALUE IS [ALL] literal-1

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-19

b. Initialize small tables at compile time by including a VALUE clause on the group item that serves as a “parent”
to the table, as follows:

05 SHIRT-SIZES VALUE “S 14M 15L 16XL17”.
 10 SHIRT-SIZE-TBL OCCURS 4 TIMES.
 15 SST-SIZE PIC X(2).
 15 SST-NECK PIC 9(2).

c. Initialize tables of almost any size at compilation time by utilizing the REDEFINES clause:

05 SHIRT-SIZE-VALUES.
 10 PIC X(4) VALUE “S 14”.
 10 PIC X(4) VALUE “M 15”.
 10 PIC X(4) VALUE “L 16”.
 10 PIC X(4) VALUE “XL17”.
05 SHIRT-SIZES REDEFINES SHIRT-SIZE-VALUES.
 10 SHIRT-SIZE-TBL OCCURS 4 TIMES.
 15 SST-SIZE PIC X(2).
 15 SST-NECK PIC 9(2).

Admittedly, the table shown in #3c is much more verbose than #3b. What is good about #3c, however, is that
you can have as many FILLER/VALUE items as you need for a larger table (and those values can be as long as
necessary!

Many COBOL compilers do not allow the use of VALUE and OCCURS on the same data item; additionally, they
don’t allow a VALUE clause on a data item subordinate to an OCCURS. GNU COBOL, however, has neither of
these restrictions!

Observe the following example, which illustrates the fourth manner in which tables may be initialized in GNU
COBOL:

05 X OCCURS 6 TIMES.
 10 A PIC X(1) VALUE ‘?’.
 10 B PIC X(1) VALUE ‘%’.
 10 N PIC 9(2) VALUE 10.

In this example, all six “A” items will be initialized to “?”, all six “B” items will be initialized to “%” and all six “N”
items will be initialized to 10. It’s not clear exactly how many times this sort of initialization will be useful, but it’s
there if you need it.

See Also…

The INITIALIZE Statement 6.2.22

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-20

5.2.2. Defining SCREEN SECTION Data Items

Figure 5-11 - SCREEN SECTION Data Item Description Syntax

The syntax skeleton shown
here describes how data
items are defined in the
SCREEN SECTION.

These data items are used
via special forms of the
ACCEPT and DISPLAY verbs
to create full-screen TUI
(“Textual User Interface”)
programs.

1. Data items defined in the SCREEN SECTION describe input, output or combination screen layouts to be used with
DISPLAY or ACCEPT statements. These screen layouts may define the entire available screen area or any subset
of it.

2. The term “available screen area” is a nebulous one in those environments where command-line shell sessions are
invoked within a graphical user-interface environment (as will be the case on Windows, OSX and most Unix/Linux
systems) – these environments allow command-line session windows to exist with a variable number of available
screen rows and columns. When you are designing GNU COBOL screens, you need to do so with an awareness of
the logical row/column geometry the program will be executing within.

level-number [identifier-1|FILLER]

[AUTO|AUTO-SKIP|AUTOTERMINATE]

[BELL|BEEP]

[BACKGROUND-COLOR IS integer-1|identifier-2]

[BLANK LINE|SCREEN]

[BLANK WHEN ZERO]

[BLINK]

[COLUMN NUMBER IS [PLUS|+] integer-2|identifier-3]

[ERASE EOL|EOS]

[FOREGROUND-COLOR IS integer-3|identifier-4]

FROM literal-1|identifier-5
[TO identifier-6]

USING identifier-7

[FULL|LENGTH-CHECK]

[HIGHLIGHT|LOWLIGHT]

[JUSTIFIED RIGHT]

[LEFTLINE]

[LINE NUMBER IS [PLUS|+] integer-4|identifier-8]

[OCCURS integer-5 TIMES]

[OVERLINE]

[PICTURE picture-string]

[PROMPT [CHARACTER IS literal-2|identifier-9]

[REQUIRED|EMPTY-CHECK]

[REVERSE-VIDEO]

[SECURE|NO-ECHO]

[SIGN IS LEADING|TRAILING [SEPARATE CHARACTER]

[UNDERLINE]

[VALUE IS [ALL] literal-3]

.

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-21

3. Data items with level numbers 01 (Constants), 66, 78 and 88 may be used in the SCREEN SECTION; they have the
same syntax, rules and usage as they do in the other DATA DIVISION sections.

4. Without LINE or COLUMN clauses, SCREEN SECTION fields will display on the console window beginning at
whatever line/column coordinate is stated or implied by the ACCEPT or DISPLAY statement that presents the
screen item. After a field is presented to the console window, the next field will be presented immediately
following that field.

5. A LINE clause explicitly stated in the definition of a SCREEN SECTION data item will override any LINE clause
included on the ACCEPT or DISPLAY statement that presents that data item to the screen. The same is true of
COLUMN clauses.

6. The Tab and Back-Tab (Shift-Tab) keys will position the cursor from field to field in the line/column sequence in
which the fields occur on the screen at execution time, regardless of the sequence in which they were defined in
the SCREEN SECTION.

See Also…

Defining Level-01 Constants 5.2.3

Defining Level-66 RENAMES Data Items 5.2.4

Defining Level 78 Constants 5.2.6

Defining Level-88 Condition Names 5.2.7

The ACCEPT Statement (Screen Data) 6.4.1.4

The DISPLAY Statement (Screen Data) 6.4.12.4

5.2.2.1. AUTO | AUTO-SKIP | AUTOTERMINATE Clause

1. The AUTO clause (the three forms are all equivalent) will
cause the cursor to automatically advance to the next
input-enabled field if the field having the AUTO clause is
completely filled.

5.2.2.2. BACKGROUND-COLOR Clause

1. The BACKGROUND-COLOR clause is used to specify the
screen background color of the screen data item or the
default screen background color of subordinate items if
BACKGROUND-COLOR is used on a group item. You
specify colors by number (0-7), or by using the constant names provided in the “screenio.cpy” copybook (which is
provided with all GNU COBOL source distributions).

2. BACKGROUND-COLOR values are inheritable from previous fields - they are not inherited from the prior field
encountered but rather from parent data items (data items with numerically lower level numbers).

3. The following is the GNU COBOL color palette:

Figure 5-12 - The GNU COBOL Color Palette (Windows Console)

Color Integer Value “screenio.cpy” Constant Name
Normal or LOWLIGHT

Appearance
HIGHLIGHT
Appearance

0 COB-COLOR-BLACK

1 COB-COLOR-BLUE

2 COB-COLOR-GREEN

3 COB-COLOR-CYAN

4 COB-COLOR-RED

5 COB-COLOR-MAGENTA

6 COB-COLOR-YELLOW

7 COB-COLOR-WHITE

5.2.2.3. BEEP | BELL Clause

[BACKGROUND-COLOR IS]
integer-1
identifier-2

[AUTO | AUTO-SKIP | AUTOTERMINATE]

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-22

1. Use the BELL or BEEP clauses (they are synonymous) to cause an audible tone to occur
when the screen item is DISPLAYed ().

5.2.2.4. BLANK LINE and BLANK SCREEN Clauses

1. The BLANK SCREEN clause will blank-out the entire screen prior to displaying the
new screen contents described by the screen data item whose description this
clause is part of.

2. The BLANK LINE clause will blank out the entire screen line upon which the screen
data item whose description contains this clause prior to displaying this screen data item.

3. Blanked-out areas will have their foreground and background colors set to the attributes of the field containing
the BLANK clause.

4. This clause is useful when one SCREEN SECTION item is being DISPLAYed over the top of a previously-DISPLAYed
one.

5.2.2.5. BLANK WHEN ZERO Clause

1. The BLANK WHEN ZERO will cause that screen data item’s value to be automatically
transformed into SPACES if a value of 0 is ever put into the field via a FROM, USING or
VALUE clause.

5.2.2.6. BLINK Clause

1. The BLINK clause modifies the visual appearance of the displayed field by making the field
contents blink. The manner in which the blinking is accomplished will vary, depending upon
the “curses” package built into the GNU COBOL implementation you’re using, as well as the
visual presentation capabilities of the command window shell you’re using. The Windows console, for example,
does not support blinking, so the visual effect of BLINK in a native Windows or MinGW version of GNU COBOL is
to elevate the BACKGROUND-COLOR intensity (normally low) to high intensity.

2. See Figure 5-12.for the GNU COBOL color palette. The “HIGHLIGHT” column shows the effect the BLINK clause
will have on BACKGROUND-COLOR when running within a Windows console window.

5.2.2.7. COLUMN Clause

1. The COLUMN clause provides a means of
explicitly stating in which column a field
should be presented on the console window
(it’s line location will be determined by the
LINE clause).

2. You may abbreviate COLUMN as COL.

3. The value of integer-2 must be 1 or greater.

4. If identifier-3 is used to specify either an absolute or relative column position, identifier-3 must be defined as a PIC
9 item without editing symbols. The value of identifier-3 at the time the screen data item is presented must be 1
or greater.

5. Any numeric USAGE is allowed for identifier-3 except for COMPUTATIONAL-1 or COMPUTATIONAL-2. Note that
either of these floating-point USAGE specifications will be accepted, but will produce unpredictable results.

6. Coordinates may be stated on an absolute basis (i.e. “COLUMN 5”) or on a relative basis based upon the end of
the previously-presented field (i.e. “COLUMN PLUS 1”).

7. The symbol “+” may be used in lieue of the word PLUS, if desired; if “+” is used in combination with integer-2,
however, there must be at least one space separating it from integer-2. Failure to include this space will cause

[BELL | BEEP]

LINE
SCREEN

[BLANK]

[COLUMN NUMBER IS [PLUS | +]]
integer-2
identifier-3

BLANK WHEN ZERO

[BLINK]

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-23

the “+” sign to be simply treated as part of integer-2 and will treat the COLUMN clause as an absolute column
specification rather than a relative one.

8. If a screen data items description includes the FROM, TO, USING or VALUE clause but has no COLUMN clause,
“COLUMN PLUS 1” will be assumed.

5.2.2.8. ERASE EOL and ERASE EOS Clauses

1. The ERASE EOS clause will blank-out screen contents from the location where the
screen data item whose description contains this clause will be displayed, forward until
the end of the screen prior to displaying this screen data item.

2. The ERASE EOL clause will blank-out screen contents from the location where the
screen data item whose description contains this clause will be displayed, forward until the end of that screen line
prior to displaying this screen data item.

3. Erased- areas will have their foreground and background colors set to the attributes of the field containing the
ERASE clause.

4. This clause is useful when one SCREEN SECTION item is being DISPLAYed over the top of a previously-DISPLAYed
one.

5.2.2.9. FOREGROUND-COLOR Clause

1. The FOREGROUND-COLOR clause is used to specify the
text color of the screen data item or the default text color
of subordinate items if FOREGROUND-COLOR is used on a
group item. You specify colors by number (0-7), or by
using the constant names provided in the “screenio.cpy” copybook (which is provided with all GNU COBOL source
distributions).

2. FOREGROUND-COLOR values are inheritable from previous fields - they are not inherited from the prior field
encountered but rather from parent data items (data items with numerically lower level numbers).

3. See Figure 5-12.for the GNU COBOL color palette.

5.2.2.10. FROM, TO and USING Clauses

1. The FROM clause is used to define a field whose contents should come
from the specified literal or identifier.

2. The TO clause is used to define a data-entry field with no initial value;
when a value is entered, it will be saved to the specified identifier.

3. The USING clause is a combination of “FROM identifier-6” and “TO
identifier-6”.

5.2.2.11. FULL | LENGTH-CHECK Clause

1. The FULL or LENGTH-CHECK clause forces the user to enter data into the
field it is specified on (or into all subordinate input-capable fields if
specified on a group item) sufficient to fill every character position of the field. In order to take effect, the user
must move the cursor into the field having the FULL/LENGTH-CHECK clause in its definition. The ACCEPT
statement will ignore the Enter key and any other cursor-moving keystrokes that would cause the cursor to move
to another screen item unless the proper amount of data has been entered into the field. Function keys will still
be allowed to terminate the ACCEPT, however. In order to be functional, this attribute must be supported by the
underlying “curses” package your GNU COBOL package was built with. As of this time, the PDCurses package
(used for native Windows or MinGW builds) does not support FULL/LENGTH-CHECK.

[ERASE]
EOL
EOS

[FULL | LENGTH-CHECK]

[FOREGROUND-COLOR IS]
integer-3
identifier-4

FROM

TO
USING

literal-1
identifier-5

identifier-6

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-24

See Also…

The ACCEPT Statement (Screen Data) 6.4.1.4

5.2.2.12. HIGHLIGHT and LOWLIGHT Clauses

1. The HIGHLIGHT and LOWLIGHT clauses control the intensity of text (FOREGROUND-
COLOR). This is intended to provide a three-level intensity scheme (LOWLIGHT …
nothing (Normal) … HIGHLIGHT). In environments such as a Windows console where
only two levels of intensity are supported, LOWLIGHT is the same as leaving this
clause off altogether.

2. See Figure 5-12.for the GNU COBOL color palette and the effect the HIGHTLIGHT clause has on it in 2-level
intensity environments such as Windows.

5.2.2.13. JUSTIFIED Clause

1. The JUSTIFIED RIGHT clause, valid only on an alphabetic (PIC A) or alphanumeric (PIC
X) data item, will cause values shorter than the length of the data item to be right-
justified and space-filled when they are transferred into the screen data item via the
FROM or USING clause (the default behavior is to left-justify and space fill).

2. The word JUSTIFIED may be abbreviated as JUST.

5.2.2.14. LEFTLINE, OVERLINE and UNDERLINE Clauses

1. The LEFTLINE, OVERLINE and UNDERLINE clauses will introduce a horizontal line at the
left, top or bottom edge of a screen field, respectively.

2. These clauses may be used in any combination in a single field’s description.

3. These clauses are essentially non-functional when used within Windows command shell
(cmd.exe) environments; those video attributes are not currently supported by the
Windows console window API.

4. Whether or not these clauses operate on Cygwin or UNIX/Linux systems will depend upon the video attribute
capabilities of the terminal output drivers being used.

5.2.2.15. LINE Clause

1. The LINE clause provides a means of explicitly
stating on which line a field should be presented
on the console window (it’s column location will
be determined by the COLUMN clause).

2. The value of integer-4 must be 1 or greater.

3. If identifier-7 is used to specify either an absolute or relative column position, identifier-7 must be defined as a PIC
9 item without editing symbols. The value of identifier-7 at the time the screen data item is presented must be 1
or greater.

4. Any numeric USAGE is allowed for identifier-7 except for COMPUTATIONAL-1 or COMPUTATIONAL-2. Note that
either of these floating-point USAGE specifications will be accepted, but will produce unpredictable results.

5. Coordinates may be stated on an absolute basis (i.e. “COLUMN 5”) or on a relative basis based upon the end of
the previously-presented field (i.e. “COLUMN PLUS 1”).

6. The symbol “+” may be used in lieue of the word PLUS, if desired; if “+” is used in combination with integer-4,
however, there must be at least one space separating it from integer-4. Failure to include this space will cause
the “+” sign to be simply treated as part of integer-4 and will treat the LINE clause as an absolute line specification
rather than a relative one.

[LEFTLINE]

[OVERLINE]

[UNDERLINE]

[LINE NUMBER IS [PLUS | +]]integer-4
identifier-7

HIGHLIGHT

LOWLIGHT
[]

JUSTIFIED RIGHT

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-25

7. If a screen data items description includes the FROM, TO, USING or VALUE clause but has no LINE clause, the
“current screen line” will be assumed.

5.2.2.16. OCCURS Clause

1. An OCCURS clause can be used to repeat screen field definitions. It may
be used on either elementary or group data items.

2. If an identifier-1 was included in the description of the data item
containing the OCCURS clause, references to identifier-1 will need to be subscripted.

5.2.2.17. PICTURE Clause

1. The PICTURE clause specifies the type (A=Alphabetic, 9=Numeric,
X=Alphanumeric) and size of a screen field.

2. If the screen data item whose description contains the PICTURE clause is an input field (meaning its definition
includes either the TO or USING clause), the type specified by the PICTURE (A or 9) will be enforced on the user.
For example, if the PICTURE is 9, only numeric characters (digits, decimal point, sign) will be accepted. If the
PICTURE is A, only letters and spaces will be accepted.

3. If a screen data item does not have a PICTURE clause, its size will be inferred from the literal or identifier
associated with the field via a FROM, TO or USING clause. If there is no such clause, then length will be inferred
from the VALUE clause. If there is no VALUE clause, the screen data item will be treated as a group item (if data
items that follow have a higher level number) or an elementary item of length 0 (if data items that follow have a
smaller or equal level number).

5.2.2.18. PROMPT Clause

1. This clause defines the character that will be used as
the fill-character for any input fields on the screen.

2. The default character, should no CHARACTER
specification be coded, or should the PROMPT clause
be absent altogether, is an underscore (“_”).

3. PROMPT characters will be automatically transformed into SPACES upon input.

5.2.2.19. REQUIRED | EMPTY-CHECK Clause

1. The REQUIRED or EMPTY-CHECK clauses force the user to enter data
into the field it is specified on (or into all subordinate input-capable
fields if REQUIRED/EMPTY-CHECK is specified on a group item). In
order to take effect, the user must move the cursor into the field having the REQUIRED/EMPTY-CHECK clause in
its definition. The ACCEPT statement will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless data has been entered into the field. Function
keys will still be allowed to terminate the ACCEPT, however. In order to be functional, this attribute must be
supported by the underlying “curses” package your GNU COBOL package was built with. As of this time, the
PDCurses package (used for native Windows or MinGW builds) does not support REQUIRED/EMPTY-CHECK.

See Also…

The ACCEPT Statement (Screen Data) 6.4.1.4

5.2.2.20. REVERSE-VIDEO Clause

1. The REVERSE-VIDEO attribute reverses the meaning of the specified or implied
FOREGROUND-COLOR and BACKGROUND-COLOR attributes for the field (or all
subordinate fields if used on a group item).

[REQUIRED | EMPTY-CHECK]

[REVERSE-VIDEO]

[PICTURE picture-string]

[OCCURS integer-1 TIMES]

[PROMPT [CHARACTER IS]]
literal-2
identifier-8

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-26

5.2.2.21. SECURE | NO-ECHO Clause

1. The SECURE or NO-ECHO clause (they are synonymous with each other) may
only be used on a field allowing data entry (USING or TO). This attribute will
cause all data entered into the field to appear as asterisks.

5.2.2.22. SIGN Clause

1. The SIGN clause specifies how an “S”
symbol (see section) within a PICTURE
clause will be interpreted. Without the
SEPARATE CHARACTER option, the sign of
the screen data item’s value will be encoded by transforming the last (TRAILING) or first (LEADING) digit.

If the SEPARATE CHARACTER clause is used, then an actual “+” or “-“ sign will be inserted into the field’s value as
the first (LEADING) or last (TRAILING) character.

2. When SEPARATE CHARACTER is specified, the “S” symbol in the data item’s PICTURE must be counted when
determining the data item’s size.

See Also…

Defining Signed Data Items (SIGN) 5.2.1.9

5.2.2.23. VALUE Clause

1. The VALUE clause specifies an alphanumeric literal that will appear on
the screen at the explicit or implicit line/column position of the screen
data item.

2. A figurative constant may NOT be supplied as literal-2.

3. The inclusion of a VALUE clause into a screen data item’s description overrides any FROM, TO or USING clause
that may be present.

4. If there is no PICTURE clause supplied, the size of the screen data item will be the length of the literal-2 value. If
there is no PICTURE clause and the ALL option is specified, the ALL option will be ignored.

5. If there is a PICTURE clause specified along with the VALUE clause, then the ALL option, if any, will fill the field (up
to the size specified by the PICTURE) with repeated instances of literal-2 (including a possible trailing partial
instance).

5.2.3. 01-Level Constant Descriptions

Figure 5-13 - 01-Level Constant Description Syntax

The 01-level constant is one of four types of
compilation-time constants that can be
declared within a program. The other three
types are CDF >>DEFINE constants, CDF >>SET
constants and 78-level constants.

This particular type of constant declaration
provides the ability to determine the length of
a data item or the storage size associated with
a particular numeric USAGE type – something
not possible with the other types of constants.

1. The optional IS GLOBAL clause will make the constant’s value available to any nested subprograms.

2. Constants defined in this way become undefined once an END PROGRAM or END FUNCTION directive is
encountered in the input source.

01 constant-name-1 CONSTANT [IS GLOBAL]

AS

BYTE-LENGTH
LENGTH

OF
identifier-1
usage-name

literal-1

FROM compilation-variable-name-1

.

[SIGN IS [SEPARATE CHARACTER]]
LEADING
TRAILING

[VALUE IS [ALL] literal-2]

[SECURE | NO-ECHO]

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-27

3. Data descriptions of this form do not actually allocate any storage – they merely define a name (constant-name-1)
that may be used anywhere a numeric literal (BYTE-LENGTH or LENGTH options) or a literal of the same type as
literal-1 may be used.

4. The constant-name-1 name may not be referenced on a CDF statement.

5. Care must be taken that constant-name-1 does not duplicate any other data item name that has been defined in
the program as references to that data item name will refer to the constant and not the data item. The GNU
COBOL compiler will not issue a warning about this condition.

6. The value specified for usage-name-1 may be any of the USAGEs that do not use a PICTURE clause.

7. The BYTE-LENGTH clause will produce a numeric value for constant-name-1 identical to that which would be
returned by the BYTE-LENGTH intrinsic function executed against identifier-1 or a data item declared with a
USAGE of usage-name.

8. The LENGTH clause will produce a numeric value for constant-name-1 identical to that which would be returned
by the LENGTH intrinsic function executed against identifier-1 or a data item declared with a USAGE of usage-
name.

9. If used, usage-name may be any of BINARY-C-LONG, BINARY-CHAR, BINARY-DOUBLE, BINARY-LONG, BINARY-
SHORT, COMP-1 (or COMPUTATIONAL-1), COMP-2 (or COMPUTATIONAL-2), FLOAT-DECIMAL-16, FLOAT-
DECIMAL-34, FLOAT-LONG, FLOAT-SHORT, POINTER, or PROGRAM-POINTER.

Here is the listing of a GNU COBOL program that uses 01-level constants to DISPLAY the length (in bytes) of the various
PICTURE-less USAGE types.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. USAGELengths.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Len-BINARY-C-LONG CONSTANT AS LENGTH OF BINARY-C-LONG.
 01 Len-BINARY-CHAR CONSTANT AS LENGTH OF BINARY-CHAR.
 01 Len-BINARY-DOUBLE CONSTANT AS LENGTH OF BINARY-DOUBLE.
 01 Len-BINARY-LONG CONSTANT AS LENGTH OF BINARY-LONG.
 01 Len-BINARY-SHORT CONSTANT AS LENGTH OF BINARY-SHORT.
 01 Len-COMP-1 CONSTANT AS LENGTH OF COMP-1.
 01 Len-COMP-2 CONSTANT AS LENGTH OF COMP-2.
 01 Len-FLOAT-DECIMAL-16 CONSTANT AS LENGTH OF FLOAT-DECIMAL-16.
 01 Len-FLOAT-DECIMAL-34 CONSTANT AS LENGTH OF FLOAT-DECIMAL-34.
 01 Len-FLOAT-LONG CONSTANT AS LENGTH OF FLOAT-LONG.
 01 Len-FLOAT-SHORT CONSTANT AS LENGTH OF FLOAT-SHORT.
 01 Len-POINTER CONSTANT AS LENGTH OF POINTER.
 01 Len-PROGRAM-POINTER CONSTANT AS LENGTH OF PROGRAM-POINTER.
 PROCEDURE DIVISION.
 000-Main.
 DISPLAY "On this system, with this build of GNU COBOL, the"
 DISPLAY "PICTURE-less USAGEs have these lengths (in bytes):"
 DISPLAY " "
 DISPLAY "BINARY-C-LONG: " Len-BINARY-C-LONG
 DISPLAY "BINARY-CHAR: " Len-BINARY-CHAR
 DISPLAY "BINARY-DOUBLE: " Len-BINARY-DOUBLE
 DISPLAY "BINARY-LONG: " Len-BINARY-LONG
 DISPLAY "BINARY-SHORT: " Len-BINARY-SHORT
 DISPLAY "COMP-1: " Len-COMP-1
 DISPLAY "COMP-2: " Len-COMP-2
 DISPLAY "FLOAT-DECIMAL-16: " Len-FLOAT-DECIMAL-16
 DISPLAY "FLOAT-DECIMAL-34: " Len-FLOAT-DECIMAL-34
 DISPLAY "FLOAT-LONG: " Len-FLOAT-LONG
 DISPLAY "FLOAT-SHORT: " Len-FLOAT-SHORT
 DISPLAY "POINTER: " Len-POINTER
 DISPLAY "PROGRAM-POINTER: " Len-PROGRAM-POINTER

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-28

 STOP RUN
 .

The output of this program, on my Windows 7 system with a 32-bit MinGW build of GNU COBOL is:

On this system, with this build of GNU COBOL, the
PICTURE-less USAGEs have these lengths (in bytes):

BINARY-C-LONG: 4
BINARY-CHAR: 1
BINARY-DOUBLE: 8
BINARY-LONG: 4
BINARY-SHORT: 2
COMP-1: 4
COMP-2: 8
FLOAT-DECIMAL-16: 8
FLOAT-DECIMAL-34: 16
FLOAT-LONG: 8
FLOAT-SHORT: 4
POINTER: 4
PROGRAM-POINTER: 4

See Also…

Nested Subprograms 7.6

The CDF >>DEFINE Statement 2.2.1

The CDF >>SET Statement 2.2.3

Storage Format of Data (USAGE) 5.2.1.11

Defining Level 78 Constants 5.2.6

The BYTE-LENGTH Intrinsic Function 6.1.14.6

The LENGTH Intrinsic Function 6.1.14.31

5.2.4. 66-Level Data Descriptions (RENAMES)

Figure 5-14 - 66-Level Data Description Syntax

A 66-level data item regroups previously defined
items by specifying alternative, possibly
overlapping, groupings of elementary data
items.

1. You must use the level number 66 for data description entries that contain the RENAMES clause.

2. A level-66 data item cannot rename a level-66, level-01, level-77, or level-88 data item.

3. The identifier-2 and identifier-3 data items, along with all data items defined between those two data items in the
program source, must all be contained within the same 01-level record description.

4. There may be multiple level-66 data items that rename data items contained within the same 01-level record
description.

5. All RENAMES entries associated with one logical record must immediately follow that record's last data
description entry.

5.2.5. 77-Level Data Descriptions

1. A 77-level data item is one described using the syntax covered in section where all of the following are true:

a. The level-number used is 77.
b. The data item is described in the WORKING-STORAGE, LOCAL-STORAGE or LINKAGE SECTION.
c. The data item is not named FILLER.
d. The data item is an elementary item.
e. The data item is not part of any group item.
f. The data item description does not contain the OCCURS or RENAMES clause.

66 identifier-1 RENAMES identifier-2 [THRU identifier-3] .

GNU COBOL 2.0 Programmers Guide DATA DIVISION

11FEB2012 Version 5-29

See Also…

Defining Data Items 5.2

5.2.6. 78-Level Constant Descriptions

Figure 5-15 - 78-Level Constant Description Syntax

The 78-level constant is one of four types of compilation-time
constants that can be declared within a program. The other three
types are CDF >>DEFINE constants, CDF >>SET constants and 01-level
constants.

1. Constants defined in this way become undefined once an END PROGRAM or END FUNCTION directive is
encountered in the input source.

See Also…

The CDF >>DEFINE Statement 2.2.1

The CDF >>SET Statement 2.2.3

Defining Level-01 Constants 5.2.3

5.2.7. 88-Level Condition Names

Figure 5-16 - 88-Level Condition Name Syntas

Condition names are
Boolean (i.e. “TRUE” /
“FALSE”) data items that
receive their TRUE and
FALSE values based upon
the values of other data
items.

1. Condition names are always defined subordinate to another data item. That data item must be an elementary
item.

2. Condition names do not occupy any storage.

3. The VALUE(s) specified for the condition name specify the specific values and/or ranges of values of the parent
elementary data item that will cause the condition name to have a value of TRUE.

4. The optional FALSE clause defines an explicit value that will be assigned to the parent elementary data item
should the SET statement ever be used to set the condition-name-1 to FALSE.

See Also…

Condition Names 6.1.4.2.1

The SET condition-name Statement 6.4.39.6

78 identifier-1 VALUE IS literal-1 .

88 condition-name-1 { literal-1 [THRU literal-2] … } …

[WHEN SET TO FALSE IS literal-3]

VALUE IS
VALUES ARE

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-1

6. PROCEDURE DIVISION

The PROCEDURE DIVISION of any GNU COBOL program marks the point where all executable code is written.

6.1. General PROCEDURE DIVISION Components

6.1.1. General Format of the PROCEDURE DIVISION

Figure 6-1 - General PROCEDURE DIVISION Syntax

It is in the PROCEDURE DIVISION that all executable
program code will be placed.

1. The USING clause defines arguments that may be passed to a GNU COBOL program serving as a subprogram. All
identifiers specified on the USING clauses must be defined in the LINKAGE SECTION.

2. The RETURNING clause can be used as a means of specifying and documenting a value that a subprogram can pass
back to the program that invoked it. Main programs that wish to “pass back” a return code value to the operating
system when they exit do so simply by MOVEing a value to the RETURN-CODE special register, and do not need (or
use) a RETURNING clause on their PROCEDURE DIVISION header.

3. The first (optional) segment of any PROCEDURE DIVISION is a special area known as “DECLARATIVES”. In this area,
you may define processing routines that are to be used as special “trap” routines executed only when certain
events occur.

4. The various sections and paragraphs in which the procedural logic of your program will be coded will follow any
“DECLARATIVES”. These sections and paragraphs are discussed in more detail in section 0.

See Also…

Special Registers 6.1.13

Subprogram Argument Definitions 6.1.2

Using DECLARATIVES 6.1.4

The MOVE Statement 6.2.26

Sub-programming 0

6.1.2. General Format for Subprogram Arguments

Figure 6-2 - Syntax of a PROCEDURE DIVISION USING Argument

1. The BY REFERENCE clause indicates that the program will be passed the address of the data item corresponding to
a program argument; any changes this program makes to a BY REFERENCE argument will be passed back to the
calling program.

PROCEDURE DIVISION

[USING argument-1 …]

[RETURNING identifier-1] .

DECLARATIVES

[declaratives-procedure] …

END DECLARATIVES.

[section-name-1 SECTION.]

[paragraph-name-1.]

[procedural-sentence-1] …
…

…

AUTO
BY [UNSIGNED] SIZE IS DEFAULT [OPTIONAL] identifier-1

integer-1

REFERENCE
VALUE

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-2

2. BY REFERENCE is the assumed default for the first USING argument should no BY clause be specified for it.
Subsequent arguments will assume the “BY” specification of the argument prior to them should they lack a BY
clause of their own.

3. The BY VALUE clause indicates the program will be passed a copy of the data item from the calling program that
corresponds to the argument. The contents of BY VALUE arguments can be changed by the subprograms receiving
them, but those changes will not “find their way” back to the calling program.

4. If the calling program passes an argument BY REFERENCE or BY CONTENT, the subprogram should specify that
argument as “BY REFERENCE” on its PROCEDURE DIVISION header. If the calling program passes an argument BY
VALUE, the subprogram should specify that argument as “BY VALUE” on its PROCEDURE DIVISION header.

5. The various SIZE clauses specify the size (in bytes) of received BY VALUE arguments. The SIZE IS AUTO clause (the
default) indicates that argument size will be determined automatically based upon the size of the item in the calling
program. The remaining SIZE options allow you to force a specific size to be assumed.

6. The UNSIGNED clause will add “unsigned” to the C-language code generated when defining the argument in the
function header of the C function corresponding to the GNU COBOL subprogramming. This is of value when a C
program will be calling this subprogram.

See Also…

The CALL Statement 6.4.5

Sub-programming 0

6.1.3. PROCEDURE DIVISION Sections and Paragraphs

The PROCEDURE DIVISION is the only one of the COBOL divisions that allows you to create your own sections and
paragraphs. These are collectively referred to as procedure names. Procedure names are oprtional in the PROCEDURE
DIVISION and – when used – are named entirely according to the needs and whims of the programmer.

When procedure names are defined, the entire collection of GNU COBOL statements that follow the procedure name
are collectively referred to as a procedure. If there are no procedure names defined whatsoever, then the entire set of
all statements defined within the PROCEDURE DIVISION constituite a single (unnamed) procedure.

Procedure names may be up to thirty one (31) characters long, and may consist of letters, numbers, dashes and
underscores, with just one caveat. A procedure name may neither begin nor end with a dash (-) or underscore (_)
character. This means that “17” is a perfectly valid procedure name.

There are two circumstances under which the use of certain GNU COBOL statements or options will require the
specification of procedures. These situations are:

1. When DECLARATIVES are specified. These are discussed in section 6.1.4 (“General Format for DECLARATIVES
Procedures”).

2. When any PROCEDURE DIVISION statement that references procedures is used. These statements are:

 ALTER

 GO TO

 MERGE (with an OUTPUT PROCEDURE)

 PERFORM

 SORT (with an INPUT PROCEDURE and/or an OUTPUT PROCEDURE)

See Also…

User-defined Names 1.10

The ALTER Statement 6.2.4

The GO TO Statement 6.2.20

The MERGE Statement 6.4.25

The PERFORM Statement (Procedural) 6.2.30.1

The SORT Statement (File Sort) 6.4.40.1

USE Statements and DECLARATIVES 6.1.4

6.1.4. General Format for DECLARATIVES Procedures

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-3

Figure 6-3 - General DECLARATIVES Procedure Syntax

1. The DECLARATIVES area of the PROCEDURE DIVISION allows the programmer to define a series of “trap”
procedures (referred to as declarative procedures) capable of intercepting certain events that may occur at
program execution time. The syntax diagram above shows the format of a single such procedure.

2. DECLARATIVES may contain any number of declarative procedures, but no two declarative procedures should be
designed to trap the same event.

3. The USE BEFORE REPORTING and AFTER EXCEPTION CONDITION clauses are currently syntactically recognized but
otherwise unsupported.

4. The USE FOR DEBUGGING clause allows you to define a declarative procedure that will be invoked immediately
before:

a. The specified identifier is referenced (REFERENCES OF …), or …

b. The named procedure is executed (procedure-name-1), or …

c. Any procedure is executed (ALL PROCEDURES).

Any USE FOR DEBUGGING declarative procedures will be ignored at compilation time unless WITH DEBUGGING
MODE is specified in the SOURCE-COMPUTER paragraph.

Any USE FOR DEBUGGING declarative procedures will be ignored at execution time unless the “COB_SET_DEBUG”
environment variable has been set to a value of “Y”, “y” or “1”.

The typical use of a USE FOR DEBUGGING declarative procedure is to DISPLAY the DEBUG-ITEM special register,
which will be implicitly and automatically created in your program for you if WITH DEBUGGING MODE is active.

5. The structure of DEBUG-ITEM will be as follows:

01 DEBUG-ITEM.
 05 DEBUG-LINE PIC X(6). The program line number of the statement that triggered the

declaratives procedure.
 05 FILLER PIC X(1) VALUE SPACE.
 05 DEBUG-NAME PIC X(31). The procedure name or identifier name that triggered the

declaratives procedure.
 05 FILLER PIC X(1) VALUE SPACE.
 05 DEBUG-SUB-1 PIC S9(4)
 SIGN LEADING SEPARATE.

The first subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

 05 FILLER PIC X(1) VALUE SPACE.
 05 DEBUG-SUB-2 PIC S9(4)
 SIGN LEADING SEPARATE.

The second subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

 05 FILLER PIC X(1) VALUE SPACE.
 05 DEBUG-SUB-3 PIC S9(4)
 SIGN LEADING SEPARATE.

The third subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

 05 FILLER PIC X(1) VALUE SPACE.

section-name-1 SECTION.

[GLOBAL] AFTER STANDARD PROCEDURE ON

FOR DEBUGGING ON

[GLOBAL] BEFORE REPORTING identifier-2

AFTER

{ [paragraph-name-1] sentence-1 … } …

INPUT
OUTPUT
I-O
EXTEND
file-name-1 …

EXCEPTION
ERROR

ALL PROCEDURES
REFERENCES OF identifier-1
procedure-name-1

EXCEPTION CONDITION
EC

USE

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-4

 05 DEBUG-CONTENTS PIC X(31). A (brief) statement of the manner in which the procedure that
triggered the declaratives procedure was executed or the first 31
characters of the value of the identifier whose reference triggered
the declaratives procedure (the value after the statement was
executed).

6. The USE AFTER STANDARD ERROR PROCEDURE clause defines a declarative procedure invoked any time a failure is
encountered with the specified I/O type (or against the specified file(s)).

7. The GLOBAL option, if used, allows a declarative procedure to be used across all programs in the same compilation
group.

8. Declarative procedures outines (of any type) may not reference any other procedures defined outside the scope of
DECLARATIVES.

See Also…

The SOURCE-COMPUTER Paragraph 4.1.1

Special Registers 6.1.13

Using DECLARATIVES 6.1.4

Execution-time Environment Variables 8.2.4

6.1.5. Table References

COBOL uses parenthesis to specify the subscripts used to reference table entries (tables in COBOL are what other
programming languages refer to as arrays).

For example, observe the following data structure which simulates a 4 column by 3 row grid of characters:

01 GRID.
 05 GRID-ROW OCCURS 3 TIMES.
 10 GRID-COLUMN OCCURS 4 TIMES.
 15 GRID-CHARACTER PIC X(1).

A reference to the GRID-CHARACTER shaded in the following diagram:

Would be coded as:

GRID-CHARACTER (2, 3)

Subscripts may be specified as numeric (integer) literals, PIC 9 (integer) data items, data items created with any of the
PICTURE-less integer USAGE specifications, USAGE INDEX data items or arithmetic expressions resulting in an integer
value. The ability to use full arithmetic expressions as table (array) subscripts, while common in many languages, is rare
in the COBOL universe, only having come into existence with the COBOL2002 standard.

See Also…

Arithmetic Expressions 6.1.4.1

Table Subscript versus Table Index 9.3

6.1.6. Qualification of Data Names

COBOL allows data names to be duplicated within a program, provided references to those data names may be made in
such a manner as to make those references unique through a process known as qualification.

To see qualification at work, observe the following segments of two data records defined in a COBOL program:

01 EMPLOYEE.
 05 MAILING-ADDRESS.
 10 STREET PIC X(35).
 10 CITY PIC X(15).
 10 STATE PIC X(2).
 10 ZIP-CODE.
 15 ZIP-CODE-5 PIC 9(5).

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-5

 15 FILLER PIC X(4).
01 CUSTOMER.
 05 MAILING-ADDRESS.
 10 STREET PIC X(35).
 10 CITY PIC X(15).
 10 STATE PIC X(2).
 10 ZIP-CODE.
 15 ZIP-CODE-5 PIC 9(5).
 15 FILLER PIC X(4).

Now, let’s deal with the problem of setting the CITY portion of an EMPLOYEEs MAILING-ADDRESS to “Philadelphia”.
Clearly, the following cannot work because the compiler will be unable to determine which of the two CITY fields you
are referring to:

MOVE “Philadelphia” TO CITY.

We could qualify the reference to CITY as follows, in an attempt to correct the problem:

MOVE “Philadelphia” TO CITY OF MAILING-ADDRESS.

Unfortunately that too is insufficient because it is still insufficient to identify specifically which CITY is being referenced.
To truly identify which specific CITY you want, you’d have to code the following:

MOVE “Philadelphia” TO CITY OF MAILING-ADDRESS OF EMPLOYEE.

Now there can be no confusion as to which CITY is being changed. Fortunately, you don’t need to be quite so specific;
COBOL allows intermediate qualification levels to be omitted. This allows you to specify:

MOVE “Philadelphia” TO CITY OF EMPLOYEE.

If you need to qualify a reference to a table, do so as follows:

identifier-1 OF identifier-2 (subscript …)

The reserved word “IN” may be used in lieu of “OF”.

6.1.7. Reference Modifiers

Figure 6-4 - Reference Modifier Syntax

The COBOL ’85 standard introduced the concept of a reference modifier to facilitate references to only a portion of a
data item; GNU COBOL fully supports reference modification.

The start value indicates the starting character position being referenced (character position values start with 1, not 0
as is the case in some programming languages) and length specifies how many characters are wanted. If no length is
specified, a value equivalent to the remaining character positions from start to the end will be assumed. Both start and
length may be specified as integer numeric literals, integer numeric data items or arithmetic expressions with an integer
value. The default length is 1.

Here are a few examples:

CUSTOMER-LAST-NAME (1:3) references the first three characters of CUSTOMER-LAST-NAME.

CUSTOMER-LAST-NAME (4:) references all character positions of CUSTOMER-LAST-NAME from the fourth
onward.

FUNCTION CURRENT-DATE (5:2) references the current month.

Hex-Digits (Nibble + 1:1) Assuming that “Nibble” is a numeric data item with a value in the range 0-15, and
Hex-Digits is a PIC X(16) item with a value of “0123456789ABCDEF”, this converts
that numeric value to a hexadecimal digit.

Hex-Digits (Nibble + 1:) Does the same as the above – if you leave out the length, 1 is assumed; YOU STILL
NEED THE “:” CHARACTER THOUGH.

(start : [length])identifier-1 [OF|IN identifier-2][(subscript …)]
intrinsic-function-reference

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-6

Array-Element (6) (7:5) References 5 characters in the 6
th

 occurrence of Array-Element, starting at character
position 7.

Reference modification may be used anywhere an identifier is legal, including serving as the receiving field of
statements like MOVE, STRING and ACCEPT, to name a few.

See Also…

The CURRENT-DATE Intrinsic Function 6.1.14.12

6.1.8. Expressions

GNU COBOL supports two basic types of Expressions

 Arithmetic expressions, which calculate a numeric result
 Conditional Expressions, which calculate a TRUE or FALSE value

Unlike other programming languages, which allow arithmetic values such as 0 and -1 to represent FALSE and TRUE,
respectively, GNU COBOL treats logical TRUE/FALSE values as something different from 0/-1.

6.1.8.1. Arithmetic Expressions

Arithmetic expressions are formed using following operators. In complex expressions composed of multiple operators,
a precedence of operation applies whereby those operations having a higher precedence are computed first before
operations with a lower precedence.

Precedence Operation Discussion

1
st

(Highest)

Figure 6-5 – Unary “Minus” (-) Operator Syntax

The unary “minus” (-) operator
returns the arithmetic
negation of its single
argument, effectively returning
as its value the product of its
argument and -1.

Figure 6-6 – Unary “Plus” (+) Operator Syntax

The unary “plus” (+) operator
returns the value of its single
argument, effectively returning
as its value the product of its
argument and +1.

2
nd

Figure 6-7 - Exponentiation Operator (** or ^) Syntax

The value of the left-hand
argument raised to the power
indicated by the right-hand
argument is computed.

Non-integer powers are
allowed.

GNU COBOL allows the “^”
symbol to be used in lieu of the
“**” symbol.

3
rd

Figure 6-8 - Multiplication Operator (*) Syntax

The product of the left-hand
argument and the right-hand
argument is computed.

numeric-literal-1
- identifier-1

(arithmetic-expression-1)

numeric-literal-1
+ identifier-1

(arithmetic-expression-1)

numeric-literal-1 numeric-literal-2
identifier-1 ** identifier-2
(arithmetic-expression-1) (arithmetic-expression-2)

numeric-literal-1 numeric-literal-2
identifier-1 * identifier-2
(arithmetic-expression-1) (arithmetic-expression-2)

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-7

Precedence Operation Discussion

Figure 6-9 - Division Operator (/) Syntax

The value of the left-hand
argument divided by the right-
hand argument is computed.

If the right-hand argument has
a value of zero, expression
evaluation will be prematurely
terminated before a value is
generated. This may cause
program failure at run-time.

4
th

(Lowest)

Figure 6-10 - Addition Operator (+) Syntax

The sum of the left-hand
argument and the right-hand
argument is computed.

Figure 6-11 - Subtraction Operator (-) Syntax

The value of the right-hand
argument subtracted from the
left-hand argument is
computed.

The syntaxctical rules of GNU COBOL, allowing a dash (-) character in data item names, can lead to some ambiguity.
Observe this sample GNU COBOL code:

01 C PIC 9 VALUE 5.
01 D PIC 9 VALUE 2.
01 C-D PIC 9 VALUE 7.
01 I PIC 9 VALUE 0.
…
COMPUTE I=C-D+1
DISPLAY I

What should be displayed by the DISPLAY statement? The number “4”, which is the result of subtracting the value of D
(the value 2) from the value of C (the value 5) and then adding 1 or the number “8”, which is the value of adding 1 to
the value of data item C-D?

The right answer is “8” – the value of data item C-D plus 1!

The GNU COBOL compiler actually went through the following decision-making logic when generating code for the
COMPUTE Statement

1. Is there a data item named “C-D” defined? If so, use its value for “C-D”

2. If there is no “C-D” data item, then check if there are “C” and “D” data items. If not, the COMPUTE statement is in
error. If there are, however, then code will be generated to subtract the value of “D” from “C” and add 1 to the
result.

Had there been at least one space to the left and/or the right of the “-“, there would have been no ambiguity – the
compiler would have been forced to use the individual “C” and “D” data items.

It’s considered good COBOL programming practice to always code at least one space to both the left and right of every
arithmetic operator as well as the “=” sign on a COMPUTE.

numeric-literal-1 numeric-literal-2
identifier-1 / identifier-2
(arithmetic-expression-1) (arithmetic-expression-2)

numeric-literal-1 numeric-literal-2
identifier-1 + identifier-2
(arithmetic-expression-1) (arithmetic-expression-2)

numeric-literal-1 numeric-literal-2
identifier-1 - identifier-2
(arithmetic-expression-1) (arithmetic-expression-2)

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-8

Here are some examples of how the precedence of operations affects the results of arithmetic expressions (all examples
use numeric literals, to simplify the discussion).

Expression Result Notes

3 * 4 + 1 13 * has precedence over +

4 * 2 ^ 3 - 10 22 2
3

is 8 (^ has precedence over *), times 4 is 32, minus 10 is 22.

(4 * 2) ^ 3 - 10 502 Parenthesis provide for a recursive application of the arithmetic expression
rules, effectively allowing you to alter the precedence of operations.

4 times 2 is 8 (the use of parenthesis “trumps” the exponention operator,
so the multiplication happens first); 8 ^ 3 is 512, minus 10 is 502.

5 / 2.5 + 7 * 2 – 1.15 15.35 Integer and non-integer operands may be freely intermixed

Of course, arithmetic expression operands may be numeric data items (any USAGE except DISPLAY, POINTER or
PROGRAM POINTER) as well as numeric literals.

6.1.8.2. Conditional Expressions

Conditional expressions are expressions which identify the conditions under which a program may make a decision
about processing to be performed. As such, conditional expressions produce a value of TRUE or FALSE.

There are seven types of conditional expressions, as follows, in increasing order of complexity.

6.1.8.2.1. Condition Names (Level-88 Items)

These are the simplest of all conditions. Observe the following code:

05 SHIRT-SIZE PIC 99V9.
 88 LILLIPUTIAN VALUE 0 THRU 12.5
 88 XS VALUE 13 THRU 13.5.
 88 S VALUE 14, 14.5.
 88 M VALUE 15, 15.5.
 88 L VALUE 16, 16.5.
 88 XL VALUE 17, 17.5.
 88 XXL VALUE 18, 18.5.
 88 BROBDINGNAGIAN VALUE 19 THRU 99.9.

The condition names “LILLIPUTIAN”, “XS”, “S”, “M”, “L”, “XL”, “XXL” and “BROBDINGNAGIAN” will have TRUE or FALSE
values based upon the values within their parent data item (SHIRT-SIZE). So, a program wanting to test whether or not
the current SHIRT-SIZE value can be classified as “XL” could have that decision coded as a combined condition (the most
complex type of conditional expression), as either:

IF SHIRT-SIZE = 17 OR SHIRT-SIZE = 17.5
- or -

 IF SHIRT-SIZE = 17 OR 17.5

Or it could utilize the condition name XL as follows:

IF XL

See Also…

Defining Level-88 Condition Names 5.2.7

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-9

6.1.8.2.2. Class Conditions

Figure 6-12 - Class Condition Syntax

Class conditions evaluate the type of data that is
currently stored in a data item.

1. The NUMERIC class test considers only the characters “0”, “1”, … , “9” to be numeric; only a data item containing
nothing but digits will pass a NUMERIC class test. Spaces, decimal points, commas, currency signs, plus signs, minus
signs and any other characters except the digit characters will all fail “NUMERIC” class tests.

2. The ALPHABETIC class test considers only upper-case letters, lower-case letters and SPACES to be alphabetic in
nature.

3. The ALPHABETIC-LOWER and ALPHABETIC-UPPER class conditions consider only spaces and the respective type of
letters to be acceptable in order to pass such a class test.

4. Note that what constitutes a “letter” (or upper/lower case too, for that manner) may be influenced through the use
of CHARACTER CLASSIFICATION specifications in the OBJECT-COMPUTER paragraph.

5. Only data items whose USAGE is either explicitly or implicitly defined as DISPLAY may be used in NUMERIC or any of
the ALPHABETIC class conditions.

6. Some COBOL implementations disallow the use of group items or PIC A items with NUMERIC class conditions and
the use of PIC 9 items with ALPHABETIC class conditions. GNU COBOL has no such restrictions.

7. The OMITTED class condition is used when it is necessary for a subprogram to determine whether or not a particular
argument was passed to it. In such class conditions, identifier-1 must be a LINKAGE SECTION item defined on the
USING clause of the subprograms PROCEDURE DIVISION header.

8. The class-name-1 option allows you to test for a user-defined class. Here’s an example. First, assume the following
SPECIAL-NAMES definition of the user-defined class “Hexadecimal”:

SPECIAL-NAMES.
 CLASS Hexadecimal IS ‘0’ THRU ‘9’, ‘A’ THRU ‘F’, ‘a’ THRU ‘f’.

Now observe the following code, which will execute the 150-Process-Hex-Value procedure if Entered-Value contains
nothing but valid hexadecimal digits:

 IF Entered-Value IS Hexadecimal
 PERFORM 150-Process-Hex-Value
 END-IF

See Also…

The OBJECT-COMPUTER Paragraph 4.1.2

The CALL Statement 6.4.5

6.1.8.2.3. Sign Conditions

Figure 6-13 - Sign Condition Syntax

Sign conditions evaluate the numeric state of a PIC 9 data item.

1. Only data items defined with some sort of numeric USAGE/PICTURE can be used for this type of class condition.

2. A POSITIVE or NEGATIVE class condition will be TRUE only if the value of identifier-1 is strictly greater than or less
than zero, respectively. A ZERO class condition can be passed only if the value of identifier-1 is exactly zero.

identifier-1 IS [NOT]

NUMERIC
ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
OMITTED
class-name-1

Identifier-1 IS [NOT]
POSITIVE
NEGATIVE
ZERO

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-10

6.1.8.2.4. Switch-Status Conditions

Figure 6-14 - Using Switch Conditions

In the SPECIAL-NAMES paragraph, an external
switch name can be associated with one or
more condition names. These condition names
may then be used to test the ON/OFF status of
the external switch.

An example is shown to the left.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

6.1.8.2.5. Relation Conditions

Figure 6-15 - Relation Condition Syntax

These conditions evaluate how two different values “relate” to each other.

1. When comparing one numeric value to another, the USAGE and number of significant digits in either value are
irrelevant as the comparison is performed using the actual algebraic values.

2. When comparing strings, the comparison is made based upon the program’s collating sequence (see section). When
the two string arguments are of unequal length, the shorter is assumed to be padded (on the right) with a sufficient
number of SPACES as to make the two strings of equal length. String comparisons take place on a corresponding
character-by-character basis until an pair of characters is found that violates the condition being tested for based
upon the relative position of where each character in the pair falls in the program’s COLLATING SEQUENCE (as
defined in SPECIAL-NAMES).

.

.

.
ENVIRONMENT DIVISION.
.
.
.
SPECIAL-NAMES.

SWITCH-1
ON STATUS IS OK-To-Display.

.

.

.
PROCEDURE DIVISION.
.
.
.

IF OK-To-Display
DISPLAY ‘Switch 1 Set’
END-DISPLAY

END-IF
.
.
.

$ COB_SWITCH_1=ON
$ export COB_SWITCH_1
$ testprog
Switch 1 Set
$

Setting the switch and
running the program
(Unix/Cygwin/OSX)…

Relevant sections of ‘testprog’…

Setting the switch and
running the program
(Windows)…

C:>SET COB_SWITCH_1=ON
C:>testprog
Switch 1 Set
C:>

IS [NOT]

identifier-1
literal-1
arithmetic-expression-1
index-name-1

Identifier-2
literal-2
arithmetic-expression-2
index-name-2

EQUAL TO
EQUALS
GREATER THAN
GREATER THAN OR EQUAL TO
LESS THAN
LESS THAN OR EQUAL TO

=
>
>=
<
<=

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-11

3. There is no functional difference between using the wordy version (“IS EQUAL TO”, “IS LESS THAN”, …) versus the
symbolic version (“=”, “<”, …) of the actual relation operators.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

6.1.8.2.6. Combined Conditions

Figure 6-16 - Combined Condition Syntax

A combined condition is one that computes a TRUE/FALSE value from the
TRUE/FALSE values of two other conditions (which could – themselves –
be combined conditions).

1. If either condition has a value of TRUE, the result of ORing the two together will result in a value of TRUE. Only
when ORing two FALSE conditions will a result of FALSE occur.

2. In order for AND to yield a value of TRUE, both conditions must have a value of TRUE. In all other circumstances,
AND produces a FALSE value.

3. When chaining multiple, similar conditions together with the same operator (OR/AND), and left or right arguments
having common operators and subjects, it is possible to abbreviate the program code. For example:

IF ACCOUNT-STATUS = 1 OR ACCOUNT-STATUS = 2 OR ACCOUNT-STATUS = 7

Could be abbreviated as:

IF ACCOUNT-STATUS = 1 OR 2 OR 7

4. Just as multiplication takes precedence over addition in arithmetic expressions, so does AND take precedence over
OR in combined conditions. Use parenthesis to change this precedence, if necessary. For example:

FALSE OR FALSE AND TRUE evaluates to TRUE

FALSE OR (FALSE AND TRUE) evaluates to TRUE (since AND has precedence over OR, this is identical to the
previous example)

(FALSE OR FALSE) AND TRUE evaluates to FALSE

6.1.8.2.7. Negated Conditions

Figure 6-17 - Negated Condition Syntax

A condition may be negated by prefixing it with the NOT operator.

1. The NOT operator has the highest precedence of all logical operators, just as a unary minus sign (which “negates” a
numeric value) is the highest precedence arithmetic operator.

2. Parenthesis must be used to explicitly signify the sequence in which conditions are evaluated and processed if the
default precedence isn’t desired. For example:

NOT TRUE AND FALSE AND NOT FALSE evaluates to FALSE AND FALSE AND TRUE which evaluates to FALSE

NOT (TRUE AND FALSE AND NOT FALSE) evaluates to NOT (FALSE) which evaluates to TRUE

NOT TRUE AND (FALSE AND NOT FALSE) evaluates to FALSE AND (FALSE AND TRUE) which evaluates to FALSE

6.1.9. Use of Periods (.)

All COBOL implementations distinguish between sentences and statements in the PROCEDURE DIVISION. A statement
is a single executable COBOL instruction. For example, these are all statements:

MOVE SPACES TO Employee-Address
ADD 1 TO Record-Counter
DISPLAY “Record-Counter=” Record-Counter

condition-1 condition-2
AND
OR

NOT condition-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-12

Some COBOL statements have a “scope of applicability” associated with them where one or more other statements can
be considered to be part of or related to the statement in question. An example of such a situation might be the
following, where the interest on a loan is being calculated and displayed - 4% interest if the loan balance is under
$10000 and 4.5% otherwise:

IF Loan-Balance < 10000
 MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE
 MULTIPLY Loan-Balance BY 0.045 GIVING Interest
DISPLAY “Interest Amount = “ Interest

In this example, the IF statement actually has a scope that can include two sets of associated statements – one set to be
executed when the IF condition is TRUE and another if it is FALSE.

Unfortunately, there’s a problem with the above. A human being looking at that code will probably understand that the
DISPLAY statement, because of its lack of indentation, is to be executed regardless of the TRUE/FALSE value of the IF
condition. Unfortunately, the GNU COBOL compiler (or any other COBOL compiler for that matter) won’t see it that
way because it really couldn’t care less what sort of indentation, if any, is used. In fact, any COBOL compiler would be
just as happy to see the code written like this:

IF Loan-Balance < 10000 MULTIPLY Loan-balance BY 0.04 GIVING Interest ELSE MULTIPLY Loan-
Balance BY 0.045 GIVING Interest DISPLAY “Interest Amount = “ Interest

So how then do we inform the compiler that the DISPLAY statement is outside the scope of the IF?

That’s where sentences come in.

A COBOL sentence is defined as any arbitrarily long sequence of statements, followed by a period (.) character. The
period character is what terminates the scope of a set of statements. Therefore, our example needs to be coded like
this:

IF Loan-Balance < 10000
 MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE
 MULTIPLY Loan-Balance BY 0.045 GIVING Interest.
DISPLAY “Interest Amount = “ Interest

See the period at the end of the second MULTIPLY (I highlighted it)? That is what terminates the scope of the “IF”, thus
making the DISPLAY something that will be executed regardless of how the “Loan-Balance < 10000” test evaluated.

6.1.10. Use of “VERB” / “END-VERB” Constructs

Prior to the 1985 COBOL standard, using a period character was the only way to signal the end of a statement’s scope.
Unfortunately, this caused some problems. Take a look at this code:

IF A = 1
 IF B = 1
 DISPLAY “A & B = 1”
ELSE
 IF B = 1
 DISPLAY “A NOT = 1 BUT B = 1”
 ELSE
 DISPLAY “NEITHER A NOR B = 1”.

The problem with this code is that indentation – so critical
for improving the human-readability of a program –
provides an erroneous view of the logical flow. An ELSE is
always associated with the most-recently encountered IF;
this means the highlighted ELSE will be associated with the
“IF B = 1” statement, not the “IF A = 1” statement.

This sort of problem led to the “band-aid” solution
19

shown to the right being added to the COBOL
language.

IF A = 1
 IF B = 1
 DISPLAY “A & B = 1”
 ELSE
 NEXT SENTENCE
ELSE
 IF B = 1
 DISPLAY “A NOT = 1 BUT B = 1”

19
 Yes, I realize you could have easily fixed the problem by changing the code to “IF A = 1 AND B = 1”, but that wouldn’t have

allowed me to make my case here

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-13

 ELSE
 DISPLAY “NEITHER A NOR B = 1”.

The NEXT SENTENCE statement informs the GNU COBOL compiler that if the “B = 1” condition is false, control should
fall into the first statement that follows the next period.

With the 1985 standard for COBOL, a much more elegant solution was introduced. Those COBOL verbs (statements)
that needed such a thing were allowed to use an “END-verb” construct to end their scope without disrupting the scope
of any statements whose scope they might have been in. Any COBOL 85 compiler would have allowed the following
solution to our problem:

IF A = 1
 IF B = 1
 DISPLAY “A & B = 1”
 END-IF
ELSE
 IF B = 1
 DISPLAY “A NOT = 1 BUT B = 1”
 ELSE
 DISPLAY “NEITHER A NOR B = 1”.

This new facility made the period almost obsolete, as our program segment would probably be coded like this today:

IF A = 1
 IF B = 1
 DISPLAY “A & B = 1”
 END-IF
ELSE
 IF B = 1
 DISPLAY “A NOT = 1 BUT B = 1”
 ELSE
 DISPLAY “NEITHER A NOR B = 1”
 END-IF
END-IF

COBOL (GNU COBOL included) still requires that each PROCEDURE DIVISION paragraph contain at least one sentence if
there is any executable code in that paragraph, but a popular coding standard is now to simply code a single period
right before the end of each paragraph. Check out the “GCic” sample program in section 10.4 and you’ll see how that
would be done.

The standard for the COBOL language shows the various “END-verb” specifications to be optional because using a
period as a scope-terminator remains legal. Some statements have an “END-verb” scope-terminator defined for them
that they don’t appear to need.

20

If you will be porting existing code over to GNU COBOL, you’ll find it an accommodating facility capable of conforming to
language and coding standards that code is likely to use. If you are creating new GNU COBOL programs, however, I
would strongly counsel you to use the “END-verb” structures religiously in those programs.

See Also…

The NEXT SENTENCE Statement 6.4.28

6.1.11. Controlling Concurrent Access to Files

The manipulation of data files is one of the COBOL language’s great strengths. There are features built-in to the COBOL
language to deal with the possibility that multiple programs may be attempting to access the same file concurrently.
Multiple program concurrent access is dealt with in two ways – file sharing and record locking.

20
 STRING (section 6.2.43) and UNSTRING (section 6.2.49), for example – could it be there are plans in the works for a future

standard to introduce an option to such statements that would need a scope-terminator?

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-14

Not all GNU COBOL implementations support file sharing and record-locking options. Whether they do or not depends
upon the operating system they were built for and the build options that were used when the specific GNU COBOL
implementation was generated.

6.1.11.1. File Sharing

GNU COBOL controls concurrent-file access at the highest level through the concept of file sharing, enforced when a
program attempts to OPEN a file. This is accomplished via a UNIX operating-system routine called “fcntl()”. That
module is not currently supported by Windows

21
 and is not present in the MinGW Unix-emulation package. GNU

COBOL builds created using a MinGW environment will be incapable of supporting file-sharing controls – files will
always be shared in such environments. A GNU COBOL build created using the Cygwin environment on Windows would
have access to “fcntl()” and therefore will support file sharing. Of course, actual Unix builds of GNU COBOL, as well as
OSX builds

22
, should have no issues because “fcntl()” should be available.

Any limitations you impose on a successful OPEN will remain in place until your program either issues a CLOSE against
the file or terminates.

There are three ways in which concurrent access to a file may be controlled at the file level:

Sharing
Optionon
“OPEN”

Effect

ALL OTHER When your program opens a file in this manner, no restrictions will be placed on other
programs attempting to OPEN the file after your program did. This is the default sharing mode.

NO OTHER When your program opens a file in this manner, your program announces that it is unwilling to
allow any other program to have any access to the file as long as you are using that file; OPEN
attempts made in other programs will fail with a file status of 37 (“PERMISSION DENIED”) until
such time as you CLOSE the file.

READ ONLY Opening a file in this manner indicates you are willing to allow other programs to OPEN the file
for INPUT while you have it OPEN. If they attempt any other OPEN, their OPEN will fail with a
file status of 37.

Of course, your program may fail if someone else got to the file first and OPENed it with a sharing option that imposed
file-sharing limitations.

See Also…

FILE-STATUS Values Figure
4-15

The CLOSE Statement 6.4.7

The OPEN Statement 6.4.29

6.1.11.2. Record Locking

Record-locking is supported by advanced file-management software that provides a single point-of-control for access to
files (usually ORGANIZATION INDEXED files). One such runtime package capable of doing this is the Berkely Database
(BDB) package – a package frequently used in GNU COBOL builds to support ORGANIZATION INDEXED files. The various
I/O statements are capable of imposing limitations on the access – by other concurrently-executing programs – to the
file record they just accessed. These limitations are syntactically imposed by placing a lock on the record. Other
records in the file remain available, assuming that file-sharing limitations imposed at OPEN-time didn’t prevent access
to the entire file.

21
 Windows has other means of providing equivalent functionality to “fcntl()”, but the BDB package was not coded to utilize them.

The use of other advanced file I/O packages that support both the UNIX and Windows concurrent-access routines (such as
VBISAM) are currently under review by the author.

22
 Apple Computer’s OSX operating system is based on an open-source version of UNIX (Darwin) and therefore includes support for

“fcntl()”.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-15

Locks remain in-effect until a program holding the lock terminates or issues a CLOSE or UNLOCK against the file or
executes a COMMIT or ROLLBACK statement.

The record locking options (not all options are available to all statements) are as shown in the following table.

Record
Locking
Option

Effect

WITH LOCK Access to the record by other programs will be denied.

WITH KEPT
LOCK

Normally, as a new record is accessed locks held for previous records are released. By using this
option, not only is the newly-accessed record locked (as WITH LOCK would do), but prior record locks
will be retained as well. A subsequent READ without the KEPT LOCK option will release all “kept” locks,
as will the FREE statement.

WITH NO
LOCK

The record will not be locked. This is the default locking option in effect for all statements.

IGNORING
LOCK
WITH
IGNORE LOCK

This option is possible only when reading records – it informs GNU COBOL that any locks held by other
programs should be ignored.

The two options shown are synonymous.

WITH WAIT This option is possible only when reading records – it informs GNU COBOL that the program is willing
to wait for a lock held on the record being read to be released.

Without this option, an attempt to read a locked record will be immediately aborted and a file status of
47 will be returned.

With this option, the program will wait for a pre-configured time for the lock to be released. If the lock
is released within the preconfigured wait time, the read will be successful. If the pre-configured wait
time expires before the lock is released, the read attempt will be aborted and a 47 file status will be
issued.

If the GNU COBOL build you are using was configured to use the Berkely Database (BDB) package for INDEXED file I/O,
record locking will be available by using the execution-time environment variable DB_HOME.

See Also…

FILE-STATUS Values Figure
4-15

The CLOSE Statement 6.4.7

The COMMIT Statement 6.4.8

The FREE Statement 6.4.17

The ROLLBACK Statement 6.4.37

The UNLOCK Statement 6.4.48

Execution-time Environment Variables 8.2.4

6.1.12. Common Clauses On Executable Statements

6.1.12.1. AT END / NOT AT END

AT END clauses may be specified on READ and RETURN statements. [AT END imperative statement-1]

[NOT AT END imperative statement-2]

1. The optional AT END clause will – if present on a READ or RETURN statement – cause imperative-statement-1 to be
executed if the READ or RETURN attempt fails due to a File-Status of 10 (end-of-file).

2. An AT END clause WILL NOT DETECT OTHER NON-ZERO FILE-STATUS VALUES. See Figure 4-15 for a list of possible
File-Status values.

3. Use a DECLARATIVES routine (section) or an explicitly-declared file status field tested after the READ or RETURN to
detect error conditions other than end-of-file.

4. An optional NOT AT END clause will cause imperative-statement-2 to be executed if the READ or RETURN attempt
is successful.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-16

5. See Also…

Using DECLARATIVES 6.1.4

The READ Statement 6.4.31

The RETURN Statement 6.2.35

6.1.12.2. CORRESPONDING Option

Three GNU COBOL verbs – ADD (section 6.4.2.3), MOVE (section 6.4.26.2) and SUBTRACT (section 6.4.44.3) support the
use of a “CORRESPONDING” option that allows multiple data items within one group item (group-item-1 – the first
named on the statement) to be paired with multiple corresponding data items (hence the name) in a second group item
(group-item-2 – the second named on the statement). The contents of group-item-1 will remain unaffected by the
statement while one or more data items within group-item-2 will be changed.

In order for data-item-1, defined subordinate to group item group-item-1 to be a “CORRESPONDING” match to data-
item-2 which is subordinate to group-item-2, each of the following must be true:

1. Both data-item-1 and data-item-2 must have the same name, and that name may not explicitly or implicitly be
FILLER.

2. Both data-item-1 and data-item-2…

a. …must exist at the same relative structural “depth” of definition within group-item-1 and group-item-2,
respectively

b. …and all “parent” data items defined within each group item must have identical (but non-“FILLER”) names.

3. When used with a MOVE verb…

a. …one of data-item-1 or data-item-2 (but not both) is allowed to be a group item

b. …and it must be valid to MOVE data-item-1 TO data-item-2.

4. When used with ADD or SUBTRACT verbs, both data-item-1 and data-item-2 must be numeric, elementary,
unedited items. Stated in different terms, neither data-item-1 nor data-item-2 may be group, alphabetic,
alphanumeric or numeric-edited items.

5. Neither data item-1 nor data-item-2 may be a REDEFINES or RENAMES of another data item.

6. Neither data item-1 nor data-item-2 may have an OCCURS clause. Either may contain subordinate data items that
have an OCCURS clause, however (assuming rule 3a applies)

Observe the following two group item structures…

03 X.
 05 A PIC 9(1).
 05 G1.
 10 G2.
 15 B PIC X(1).
 05 C.
 10 FILLER PIC X(1).
 05 G3.
 10 G4.
 15 D PIC X(1).
 05 E PIC X(1).
 05 F REDEFINES V1 PIC X(1).
 05 G.
 10 G6 OCCURS 4 TIMES PIC X(1).
 05 H PIC X(4).
 05 I PIC 9(1).
 05 J.
 10 K.
 15 M PIC X(1).

01 Y.
 02 A PIC X(1).
 02 G1.
 03 G2.
 04 B PIC X(1).
 02 C PIC X(1).
 02 G3.
 03 G5.
 04 D PIC X(1).
 03 G6 PIC X(1).
 02 E PIC 9(1).
 02 F PIC X(1).
 02 G PIC X(4).
 02 H OCCURS 4 TIMES PIC X(1).
 66 I RENAMES E.
 02 J.
 03 K.
 04 L.
 05 M.

The following are the valid CORRESPONDING matches, assuming the statement MOVE CORRESPONDING X TO Y is
being used (there are no valid CORRESPONDING matches for ADD CORRESPONDING or SUBTRACT CORRESPONDING
because every potential matchup violates rule #4): A, B, C, G

The following are the “CORRESPONDING” matchups that failed, and the reasons why they failed.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-17

D Fails due to rule #2b
E Fails due to rule #3b
F Fails due to rule #5
G1 Fails due to rule #3a
G2 Fails due to rule #3a

G3 Fails due to rule #3a
G4 Fails due to rule #1
G5 Fails due to rule #1
G6 Fails due to rule #6
H Fails due to rule #6

I Fails due to rule #5
J Fails due to rule #3a
K Fails due to rule #3a
L Fails due to rule #1
M Fails due to rule #2a

See Also…

The ADD CORRESPONDING Statement 4

The MOVE CORRESPONDING Statement 6.2.26.2

The SUBTRACT CORRESPONDING
Statement

6.2.44.3

6.1.12.3. INVALID KEY / NOT INVALID KEY

INVALID KEY clauses may be specified on DELETE,
READ (Random), REWRITE, START and WRITE
statements.

[ON INVALID KEY imperative statement-1]

[NOT ON INVALID KEY imperative statement-2]

Specification of an INVALID KEY clause will allow your program to trap an I/O failure condition (with an I/O error code in
the file’s FILE-STATUS field) that has occurred due to a record-not-found condition and handle it gracefully.

See Also…

Defining File Characteristics (SELECT) 4.2.1

FILE-STATUS Values Figure
4-15

The DELETE Statement 6.4.11

The Random READ Statement 6.2.31.2

The REWRITE Statement 6.4.36

The START Statement 6.2.41

The WRITE Statement 6.4.50

6.1.12.4. ON EXCEPTION / NOT ON EXCEPTION

EXCEPTION clauses may be specified on ACCEPT, CALL
and DISPLAY statements.

[ON EXCEPTION ERROR imperative statement-1]

[NOT ON EXCEPTION ERROR imperative statement-2]

Specification of an ON EXCEPTION clause will allow your program to trap the failure condition that has occurred and
handle it gracefully. If such a condition occurs at runtime without having one of these clauses specified, an error
message will be generated (by the GNU COBOL runtime library) to the SYSERR device (pipe 2). The program may also
be terminated, depending upon the type and severity of the error.

See Also…

The ACCEPT Statement (Command Line) 6.2.1.2

The ACCEPT Statement (Screen Data) 6.4.1.4

The CALL Statement 6.4.5

The DISPLAY Statement (Console/Stdout) 6.2.12.1

The DISPLAY Statement (Command Line) 6.2.12.2

The DISPLAY Statement (Environment) 6.2.12.3

The DISPLAY Statement (Screen Data) 6.4.12.4

6.1.12.5. ON OVERFLOW / NOT ON OVERFLOW

OVERFLOW clauses may be specified on CALL, STRING
and UNSTRING statements.

[ON OVERFLOW ERROR imperative statement-1]

[NOT ON OVERFLOW ERROR imperative statement-2]

Specification of an ON OVERFLOW clause will allow your program to trap the failure condition that has occurred and
handle it gracefully. If such a condition occurs at runtime without having one of these clauses specified, an error
message will be generated (by the GNU COBOL runtime library) to the SYSERR device (pipe 2). The program may also be
terminated, depending upon the type and severity of the error.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-18

See Also…

The CALL Statement 6.4.5

The STRING Statement 6.2.43

The UNSTRING Statement 6.2.49

6.1.12.6. ON SIZE ERROR / NOT ON SIZE ERROR

SIZE ERROR clauses may be included on ADD, COMPUTE,
DIVIDE, MULTIPLY and SUBTRACT statements.

[ON SIZE ERROR imperative statement-1]

[NOT ON SIZE ERROR imperative statement-2]

Specification of an ON SIZE ERROR clause will allow your program to trap the failure condition that has occurred and
handle it gracefully. Field size overflow conditions occur silently, usually without any runtime messages being
generated, even though such events rarely lend themselves to generating correct results. Division by zero errors, when
no ON SIZE ERROR clause exists, will produce an error message (by the GNU COBOL runtime library) to the SYSERR
device (pipe 2) and will also abort the program.

See Also…

The ADD Statement 6.4.2

The COMPUTE Statement 6.4.9

The DIVIDE Statement 6.4.13

The MULTIPLY Statement 6.4.27

The SUBTRACT Statement 6.4.44

6.1.12.7. Rounding Options

GNU COBOL provides for control over the final
rounding process applied to the receiving fields
on all arithmetic verbs. Each of the arithmetic
statements (ADD, COMPUTE, DIVIDE,
MULTIPLY and SUBTRACT) statements provide
an optional ROUNDED clause to each receiving
data item. The syntax of this clause is shown to
the right.

The following rules apply to the rounding
behavior induced by this clause.

1. Rounding only applies when the result being saved to the receiving field having a ROUNDED clause is a non-integer
value

2. Absence of a ROUNDED clause is the same as specifying ROUNDED MODE IS TRUNCATION.

3. Use of a ROUNDED clause without a MODE specification is the same as specifying ROUNDED MODE IS NEAREST-
AWAY-FROM-ZERO.

4. The behavior of the eight different rounding modes is defined in the following table.

ROUNDED MODE IS

AWAY-FROM-ZERO
NEAREST-AWAY-FROM-ZERO
NEAREST-EVEN
NEAREST-TOWARD-ZERO
PROHIBITED
TOWARD-GREATER
TOWARD-LESSER
TRUNCATION

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-19

Figure 6-18 - ROUNDED MODE Behavior

MODE Behavior - Examples assume an integer receiving field – An ellipsis (…) indicates the last result value digit repeats

AWAY-FROM-
ZERO

Rounding is to the nearest value of larger
magnitude.

Result Becomes Result Becomes

+2.499… +3 -3.499… -4

-2.499… -3 +3.500 +4

+2.500 +3 -3.500 -4

-2.500 -3 3.510 +4

+3.499… +4 -3.510 -4

NEAREST-
AWAY-FROM-

ZERO

Rounding is to the nearest value (larger or smaller).
If two values are equally near, the value with the
larger absolute value is selected.

Result Becomes Result Becomes

+2.499… +2 -3.499… -3

-2.499… -2 +3.500 +4

+2.500 +3 -3.500 -4

-2.500 -3 3.510 +4

+3.499… +3 -3.510 -4

NEAREST-EVEN Rounding is to the nearest value (larger or smaller).
If two values are equally near, the value whose
rightmost digit is even is selected. This mode is
sometimes called "Banker's rounding".

Result Becomes Result Becomes

+2.499… +2 -3.499… -3

-2.499… -2 +3.500 +4

+2.500 +2 -3.500 -4

-2.500 -2 3.510 +4

+3.499… +3 -3.510 -4

NEAREST-
TOWARD-ZERO

Rounding is to the nearest value (larger or smaller).
If two values are equally near, the value with the
smaller absolute value is selected.

Result Becomes Result Becomes

+2.499… +2 -3.499… -3

-2.499… -2 +3.500 +3

+2.500 +2 -3.500 -3

-2.500 -2 3.510 +4

+3.499… +3 -3.510 -4

PROHIBITED No rounding is performed. If the value cannot be
represented exactly in the desired format, the EC-
SIZE-TRUNCATION condition (exception code 1005)
is set to exist (and may be retrieved via the ACCEPT
statement)and the results of the operation are
undefined.

Result Becomes Result Becomes

+2.499…

Undefined

-3.499…

Undefined

-2.499… +3.500

+2.500 -3.500

-2.500 +3.510

+3.499… -3.510

TOWARD-
GREATER

Rounding is toward the nearest value whose
algebraic value is larger.

Result Becomes Result Becomes

+2.499… +3 -3.499… -3

-2.499… -2 +3.500 +4

+2.500 +3 -3.500 -3

-2.500 -2 3.510 +4

+3.499… +4 -3.510 -3

TOWARD-
LESSER

Rounding is toward the nearest value whose
algebraic value is smaller.

Result Becomes Result Becomes

+2.499… +2 -3.499… -4

-2.499… -3 +3.500 +3

+2.500 +2 -3.500 -4

-2.500 -3 3.510 +3

+3.499… +3 -3.510 -4

TRUNCATION Rounding is to the nearest value whose magnitude
is smaller.

Result Becomes Result Becomes

+2.499… +2 -3.499… -3

-2.499… -2 +3.500 +3

+2.500 +2 -3.500 -3

-2.500 -2 3.510 +3

+3.499… +3 -3.510 -3

See Also…

The ACCEPT Statement (Run-time Info) 6.2.1.7

The ADD Statement 6.4.2

The COMPUTE Statement 6.4.9

The DIVIDE Statement 6.4.13

The MULTIPLY Statement 6.4.27

The SUBTRACT Statement 6.4.44

6.1.13. Special Registers

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-20

GNU COBOL, like other COBOL dialects, includes a number of data items that are automatically available to a
programmer without the need to actually define them in the DATA DIVISION. COBOL refers to such items as registers
or special registers. The special registers available to a GNU COBOL program are as follows:

Figure 6-19 - Special Registers

Register Name Implied COBOL
PIC/USAGE

23

Usage

COB-CRT-STATUS PIC 9(4) This is the default data item allocated for use by format 4 of
the ACCEPT statement.

DEBUG-ITEM
Subordinate items:
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUG-CONTENTS

PIC X(88)
(group item)

A group item in which debugging information generated by a
USE FOR DEBUGGING section in the DECLARATIVES area will
place information documenting why the USE FOR
DEBUGGING procedure was invoked.

LINAGE-COUNTER BINARY-LONG
SIGNED

An occurrence of this register exists for each SELECTed file
having a LINAGE clause. If there are multiple files whose FDs
have a LINAGE clause, any explicit references to this register
will require qualification (using “OF file-name”).

The value of this register will be the current logical line
number within the page body.

DO NOT MODIFY THE CONTENTS OF THIS REGISTER.

NUMBER-OF-CALL-
PARAMETERS

BINARY-LONG
SIGNED

This register contains the number of arguments passed to a
subroutine – the same value that would be returned by the
C$NARG built-in subroutine. Its value will be zero when
referenced in a main program. This register, when
referenced from within a user-defined function, returns a
value of one (1) if the function has any number of arguments
and a zero if it has no arguments.

RETURN-CODE BINARY-LONG
SIGNED

This register provides a numeric data item into which a
subroutine may MOVE a value prior to transferring control
back to the program that CALLed it, or into which a main
program may MOVE a value before returning control to the
operating system.

Many built-in subroutines will return a value using this
register.

These values are – by convention – used to signify success
(usually with a value of 0) or failure (usually with a non-zero
value) of the process the program setting the RETURN-CODE
value was attempting to perform.

Chapter 0 discusses the role this special register plays with
subprograms.

SORT-RETURN BINARY-LONG
SIGNED

This register is used to report the success/fail status of a
RELEASE or RETURN statement. A value of 0 is reported on
success. A value of 16 denotes failure. An “AT END”
condition on a RETURN is not considered a failure.

WHEN-COMPILED PIC X(16) This register contains the date and time the program was
compiled in the format “mm/dd/yyhh.mm.ss”. Note that
only a two-digit year is provided.

23
 See sections 5.2.1.6 and 5.2.1.11 for a description of the PICTURE and USAGE specifications, respectively

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-21

See Also…

Describing the Structure of a File (FD/SD) 5.1

Using DECLARATIVES 6.1.4

The ACCEPT Statement (Screen Data) 6.4.1.4

The RELEASE Statement 6.2.33

The RETURN Statement 6.2.35

The C$NARG Subroutine 8.3.1.9

6.1.14. Intrinsic Functions

GNU COBOL supports a variety of “intrinsic functions” that may be used anywhere in the PROCEDURE DIVISION where
a literal is allowed. For example:

MOVE FUNCTION LENGTH(Employee-Last-Name) TO Employee-LN-Len.

Note how the word “FUNCTION” is part of the syntax when you use an intrinsic function. You can use intrinsic functions
without having to include the reserved word FUNCTION via settings in the REPOSITORY paragraph of the
CONFIGURATION SECTION. You may accomplish the same thing my specifying the “-fintrinsics” option to the GNU
COBOL compiler when you compile your programs.

The following intrinsic functions, known to other “dialects” of COBOL, are defined to GNU COBOL as reserved words but
are not otherwise implemented currently. Any attempts to use these functions will result in a compile-time error
message.

BOOLEAN-OF-INTEGER FORMATTED-CURRENT-DATE INTEGER-OF-FORMATTED-DATE

CHAR-NATIONAL FORMATTED-DATE NATIONAL-OF

DISPLAY-OF FORMATTED-DATETIME STANDARD-COMPARE

EXCEPTION-FILE-N FORMATTED-TIME TEST-FORMATTED-DATETIME

EXCEPTION-LOCATION-N INTEGER-OF-BOOLEAN

The supported intrinsic functions are listed in the following sections, along with their syntax and usage notes.

See Also…

The REPOSITORY Paragraph 4.1.3

Compiler Switches Reference 8.1.2

6.1.14.1. ABS(number)

Determines and returns the absolute value of the number (a numeric literal or data item) supplied as an argument.

6.1.14.2. ACOS(cosine)

The ACOS function determines and returns the trigonometric arc-cosine, or inverse cosine, of the cosine value (a
numeric literal or data item) supplied as an argument.

6.1.14.3. ANNUITY(interest-rate, number-of-periods)

This function returns a numeric value approximating the ratio of an annuity paid at the specified interest-rate (numeric
data items or literals) for each of the specified number-of-periods (numeric data items or literals).

The interest-rate is the rate of interest paid at each payment. If you only have an annual interest rate and you wish to
compute annuity payments for monthly payments, divide the annual interest rate by 12 and use that value for interest-
rate on this function.

Multiply this result times the desired principal amount to determine the amount of each period’s payment.

A note for the financially challenged: an annuity is basically a reverse loan; an accountant would take the result of this
function multiplied by -1 to compute a loan payment you are making.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-22

6.1.14.4. ASIN(sine)

The ASIN function determines and returns the trigonometric arc-sine, or inverse sine, of the sine value (a numeric literal
or data item) supplied as an argument.

6.1.14.5. ATAN(tangent)

Use this function to determine and return the trigonometric arc-tangent, or inverse tangent, of the tangent value (a
numeric literal or data item) supplied as an argument.

6.1.14.6. BYTE-LENGTH(string)

BYTE-LENGTH returns the length – in bytes – of the specified string (a group item, USAGE DISPLAY elementary item or
alphanumeric literal). This intrinsic function is identical to the LENGTH-AN function. Note that the value returned by
this function is not necessarily the number of characters making up the string, but rather the number of actual bytes
required to store string.

For example, if string is encoded using a double-byte characterset such as UNICODE (where each character is
represented by 16 bits of storage, not the 8-bits inherent to charactersets like ASCII or EBCDIC), then calling this
function with a string argument whose PICTURE is X(4) would return a value of 8 rather than the value 4.

6.1.14.7. CHAR(integer)

This function returns the character in the ordinal position specified by the integer argument (a numeric integer literal or
data item) from the collating sequence being used by the program.

For example, if the program is using the (default) ASCII characterset, CHAR(34) returns the 34
th

 character in the ASCII
characterset – an exclamation-point (“!”). If you are using this function to convert a numeric value to its corresponding
ASCII character, you must use an argument value one greater than the numeric value.

If an argument whose value is less than 1 or greater than 256 is specified, the character in the program collating
sequence corresponding to a value of all zero bits is returned.

The following code is an alternative approach when you just wish to convert a number to its ASCII equivalent:

01 Char-Value.
 05 Numeric-Value USAGE BINARY-CHAR.
.
.
.
 MOVE numeric-character-value TO Numeric-Value
 The Char-Value item now has the corresponding ASCII character value

6.1.14.8. COMBINED-DATETIME(days, seconds)

This function returns a 12-digit result, the first seven digits of which are the integer value of the days argument (a
numeric data item or literal) and the last five of which are the integer value of the seconds argument (also a numeric
data item or literal).

If a days value less than 1 or greater than 3067671 is specified, or if a seconds value less than 1 or greater than 86400 is
specified, a value of 0 is returned and a runtime error will result.

6.1.14.9. CONCATENATE(string-1 [, string-2] …)

This function concatenates the string-1, string-2, … (group items, USAGE DISPLAY elementary items and/or
alphanumeric literals) together into a single string result.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-23

If a numeric literal or PIC 9 identifier is specified as an argument, decimal points, if any, will be removed and negative
signs in PIC S9 fields or numeric literals will be inserted as defined by the SIGN clause (or absence thereof) of the field.
Numeric literals are processed as if SIGN IS TRAILING SEPARATE were in effect.

See Also…

Defining Signed Data Items (SIGN) 5.2.1.9

6.1.14.10. COS(angle)

The COS function determines and returns the trigonometric cosine of the angle (a numeric literal or data item) supplied
as an argument. The angle is assumed to be a value expressed in radians.

6.1.14.11. CURRENCY-SYMBOL

The CURRENCY-SYMBOL function returns the currency symbol character currently in effect for the locale under which
your program is running. On UNIX systems, your locale is established via the LANG environment variable. On Windows,
the Control Panel’s Regional and Language Options define the locale.

Changing the currency symbol via the SPECIAL-NAMES paragraph’s CURRENCY SYMBOL setting will not affect the value
returned by this function.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

6.1.14.12. CURRENT-DATE

Returns the current date and time as the following 21-character structure:

01 CURRENT-DATE-AND-TIME.
 05 CDT-Year PIC 9(4).
 05 CDT-Month PIC 9(2). *> 01-12
 05 CDT-Day PIC 9(2). *> 01-31
 05 CDT-Hour PIC 9(2). *> 00-23
 05 CDT-Minutes PIC 9(2). *> 00-59
 05 CDT-Seconds PIC 9(2). *> 00-59
 05 CDT-Hundredths-Of-Secs PIC 9(2). *> 00-99
 05 CDT-GMT-Diff-Hours PIC S9(2)
 SIGN LEADING SEPARATE.
 05 CDT-GMT-Diff-Minutes PIC 9(2). *> 00 or 30

Since the CURRENT-DATE function has no arguments, no parenthesis should be specified.

6.1.14.13. DATE-OF-INTEGER(integer)

This function returns a calendar date in yyyymmdd format. The date is determined by adding the number of days
specified as integer (a numeric integer data item or literal) to December 31, 1600. For example, DATE-OF-INTEGER(1)
returns 16010101.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

6.1.14.14. DATE-TO-YYYYMMDD(yymmdd [, yy-cutoff])

You can use this function to convert the six-digit date specified as yymmdd (a numeric integer data item or literal) to an
eight-digit format (yyyymmdd). The optional yy-cutoff (a numeric integer data item or literal) argument is the year
cutoff used to delineate centuries; if the year component of the date meets or exceeds this cutoff value, the result will
be 19yymmdd; if the year component of the date is less than the cutoff value, the result will be 20yymmdd. The default
cutoff value if no second argument is given will be 50.

6.1.14.15. DAY-OF-INTEGER(integer)

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-24

This function returns a calendar date in yyyyddd (i.e. Julian) format. The date is determined by adding the number of
days specified as integer (a numeric integer data item or literal) to December 31, 1600. For example, DATE-OF-
INTEGER(1) returns 1601001.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

6.1.14.16. DAY-TO-YYYYDDD(yyddd [, yy-cutoff])

You can use this function to convert the five-digit Julian date specified as yyddd (a numeric integer data item or literal)
to a seven-digit Julian format (yyyyddd). The optional yy-cutoff argument (a numeric integer data item or literal) is the
year cutoff used to delineate centuries; if the year component of the date meets or exceeds this cutoff value, the result
will be 19yyddd; if the year component of the date is less than the cutoff, the result will be 20yyddd. The default cutoff
value if no second argument is given will be 50.

6.1.14.17. E

This function returns the mathematical constant “E” (the base of natural logarithms). The maximum precision with
which this value may be returned is 2.7182818284590452353602874713526625.

Since the E function has no arguments, no parenthesis should be specified.

6.1.14.18. EXCEPTION-FILE

This function returns I/O exception information from the most-recently executed input or output statement. The
information is returned to a structure resembling the following:

01 INPUT-OUTPUT-EXCEPTION.
 05 IOE-FILE-STATUS PIC 9(2).
 05 IOE-FILE-SELECT-NAME PIC X(32).

See Figure 4-15 for information about possible file-status values.

The name returned after the file status information will be the “SELECT” name of the file, and it will be returned only if
the returned file status value is not 00.

Since the EXCEPTION-FILE function has no arguments, no parenthesis should be specified.

The documentation of the CBL_ERROR_PROC built-in subroutine illustrates the use of this function.

See Also…

The CBL_ERROR_PROC Subroutine 8.3.1.24

6.1.14.19. EXCEPTION-LOCATION

This function returns exception information from the most-recently failing statement. The information is returned to a
1023 character string in one of the following formats, depending on the nature of the failure:

 primary-entry-point-name; paragraph OF section; statement-number
 primary-entry-point-name; section; statement-number
 primary-entry-point-name; paragraph; statement-number
 primary-entry-point-name; statement-number

Since the EXCEPTION-LOCATION function has no arguments, no parenthesis should be specified.

The program must be compiled with the “-debug” , “-ftraceall” or “-g” option for this function to return any
meaningful information.

The documentation of the CBL_ERROR_PROC built-in subroutine illustrates the use of this function.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-25

See Also…

The CBL_ERROR_PROC Subroutine 8.3.1.24

6.1.14.20. EXCEPTION-STATEMENT

This function returns the most-recent COBOL statement that generated an exception condition.

Since the EXCEPTION-STATEMENT function has no arguments, no parenthesis should be specified.

The program must be compiled with the “-debug” , “-ftraceall” or “-g” option for this function to return any
meaningful information.

The documentation of the CBL_ERROR_PROC built-in subroutine illustrates the use of this function.

See Also…

The CBL_ERROR_PROC Subroutine 8.3.1.24

6.1.14.21. EXCEPTION-STATUS

This function returns the error type (as a text string) from the most-recent COBOL statement that generated an
exception condition. Figure 6-28 shows a list of possible error types.

Since the EXCEPTION-STATUS function has no arguments, no parenthesis should be specified.

The documentation of the CBL_ERROR_PROC built-in subroutine illustrates the use of this function.

See Also…

The CBL_ERROR_PROC Subroutine 8.3.1.24

6.1.14.22. EXP(number)

Computes and returns the value of the mathematical constant “e” raised to the power specified by number (a numeric
literal or data item).

6.1.14.23. EXP10(number)

Computes and returns the value of 10 raised to the power specified by number (a numeric literal or data item).

6.1.14.24. FACTORIAL(number)

This function computes and returns the factorial value of number (a numeric literal or data item).

6.1.14.25. FRACTION-PART(number)

This function returns that portion of number that occurs to the right of the decimal point. Number must be a numeric
data item or a numeric literal. FRACTION-PART(3.1415), for example, returns a value of 0.1415. This function is
equivalent to the expression:

number – FUNCTION INTEGER-PART(number)

6.1.14.26. HIGHEST-ALGEBRAIC(numeric-identifier)

This function returns the highest (i.e. largest or farthest away from 0 in a positive direction if numeric-identifier is
signed) value that could possibly be stored in the specified numeric-identifier.

6.1.14.27. INTEGER(number)

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-26

The INTEGER function returns the greatest integer value that is less than or equal to number (a numeric literal or data
item).

6.1.14.28. INTEGER-OF-DATE(date)

This function converts date (a numeric integer data item or literal) – presumed to be a Gregorian calendar form
standard date (YYYYMMDD) - to integer date form – that is, the number of days that have transpired since 1600/12/31.

6.1.14.29. INTEGER-OF-DAY(date)

This function converts date (a numeric integer data item or literal) – presumed to be a Julian calendar form standard
date (YYYYDDD) to integer date form – that is, the number of days that have transpired since 1600/12/31.

6.1.14.30. INTEGER-PART(number)

Returns the integer portion of the value of number (a numeric literal or data item).

6.1.14.31. LENGTH(string)

Returns the length – in characters – of string (a group item, USAGE DISPLAY elementary item or alphanumeric literal).
Note that the value returned by this function is not the number of bytes of storage occupied by string, but rather the
number of actual characters making up the string. For example, if string is encoded using a double-byte characterset
such as UNICODE (where each character is represented by 16 bits of storage, not the 8-bits inherent to charactersets
like ASCII or EBCDIC), then calling this function with a string argument whose PICTURE is X(4) would return a value of 4
rather than the value 8 (the actual number of bytes of storage occupied by that item).

6.1.14.32. LENGTH-AN(string)

Returns the length – in bytes of storage – of string (a group item, USAGE DISPLAY elementary item or alphanumeric
literal). This intrinsic function is identical to the BYTE-LENGTH function. Note that the value returned by this function is
not the number of actual characters making up the string, bytes of storage occupied by string, but rather the number of
actual bytes required to store string. For example, if string is encoded using a double-byte characterset such as
UNICODE (where each character is represented by 16 bits of storage, not the 8-bits inherent to charactersets like ASCII
or EBCDIC), then calling this function with a string argument whose PICTURE is X(4) would return a value of 8 rather
than the value 4.

6.1.14.33. LOCALE-COMPARE(argument-1, argument-2 [, locale])

The LOCALE-COMPARE function returns a character indicating the result of comparing argument-1 and argument-2
using a culturally-preferred ordering defined by a locale.

Either argument may be an alphanumeric literal, a group item or an elementary item appropriate to storing alphabetic
or alphanumeric data. If the lengths of the two arguments are unequal, the shorter will be assumed to be padded to
the right with SPACES.

The two arguments will be compared, character by character, against each other until their relationship to each other
can be determined. The comparison is made according to the cultural rules in effect for the specified locale name or for
the current locale if no locale argument is specified

24
. Once that relationship is determined, a one-character

alphanumeric value will be returned as follows:

“<” If argument-1 is determined to be less than argument-2

“=” If the two arguments are equal to each other

“>” If argument-1 is determined to be greater than argument-2

24
 Locale-based ordering is not necessarily a character-by-character comparison.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-27

6.1.14.34. LOCALE-DATE(date [, locale])

Converts the eight-digit Gregorian date (a numeric integer data item or literal) from YYYYMMDD format to the format
appropriate to the current locale. On a Windows system, this will be the “short date” format as set using Control Panel.

You may include an optional second argument to specify the locale name (group item or PIC X identifier) you’d like to
use for date formatting. If used, this second argument MUST be an identifier. Locale names are specified using UNIX-
standard names. The complete list of supported locale names is shown in Figure 4-7.

6.1.14.35. LOCALE-TIME(time [, locale])

Converts the four- (HHMM) or six-digit (HHMMSS) time (a numeric integer data item or literal) to a format appropriate
to the current locale. On a Windows system, this will be the “time” format as set using Control Panel.

You may include an optional locale name (a group item or PIC X identifier) you’d like to use for time formatting. If used,
this second argument MUST be an identifier. Locale names are specified using UNIX-standard names. The complete list
of supported locale names is shown in Figure 4-7.

6.1.14.36. LOCALE-TIME-FROM-SECS(seconds [, locale])

Converts the number of seconds since midnight (a numeric integer data item or literal) to a format appropriate to the
current locale. On a Windows system, this will be the “time” format as set using Control Panel.

You may include an optional locale name (a group item or PIC X identifier) you’d like to use for time formatting. If used,
this second argument MUST be an identifier. Locale names are specified using UNIX-standard names. The complete list
of supported locale names is shown in Figure 4-7.

6.1.14.37. LOG(number)

Computes and returns the natural logarithm (base “e”) of number (a numeric literal or data item).

6.1.14.38. LOG10(number)

Computes and returns the base 10 logarithm of number (a numeric literal or data item).

6.1.14.39. LOWER-CASE(string)

This function returns the value of string (a group item, USAGE DISPLAY elementary item or alphanumeric literal),
converted entirely to lower case. Note that what constitutes a “letter” (or upper/lower case too, for that manner) may
be influenced through the use of a CHARACTER CLASSIFICATION specification in the OBJECT-COMPUTER paragraph..

See Also…

The OBJECT-COMPUTER Paragraph 4.1.2

6.1.14.40. LOWEST-ALGEBRAIC(numeric-identifier)

This function returns the lowest (i.e. smallest or farthest away from 0 in a negative direction if numeric-identifier is
signed) value that could possibly be stored in the specified numeric-identifier.

6.1.14.41. MAX(number-1 [, number-2] …)

This function returns the maximum value from the specified list numbers (these may be numeric data items or literals).

6.1.14.42. MEAN(number-1 [, number-2] …)

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-28

This function returns the statistical mean value of the specified list numbers (these may be numeric data items or
literals).

6.1.14.43. MEDIAN(number-1 [, number-2] …)

This function returns the statistical median value of the specified list numbers (these may be numeric data items or
literals).

6.1.14.44. MIDRANGE(number-1 [, number-2] …)

The MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean (average) of the values of
the minimum and maximum numbers (these may be numeric data items or literals).

6.1.14.45. MIN(number-1 [, number-2] …)

This function returns the minimum value from the specified list numbers (these may be numeric data items or literals).

6.1.14.46. MOD(value, modulus)

Returns value modulo modulus. Both arguments may be PIC 9 data items or numeric literals. Either (or both) may have
a non-integer value.

The result is determined according to the following formula:

value - (modulus * FUNCTION INTEGER (value / modulus))

6.1.14.47. MODULE-CALLER-ID

Returns the primary entry-point name (section 3) of the GNU COBOL program that CALLed this one, or the null string if
the program is a main program.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also…

The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.48. MODULE-DATE

Returns the date the GNU COBOL program was compiled, in the form YYYYMMDD.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also…

The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.49. MODULE-FORMATTED-DATE

Returns the fully-formatted date and time when the program was compiled. The exact format of this returned string
value may vary depending on the operating system, GNU COBOL build type and/or LOCALE settings.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also…

The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.50. MODULE-ID

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-29

Returns the primary entry-point name (section 3) of this GNU COBOL program.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also…

The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.51. MODULE-PATH

This function returns the full path to the executable version of this GNU COBOL program. The filename component of
this value will be exactly as typed on the command line, down to the use of upper- and lowercase letters and presence
(or absence) of any extension.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also…

The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.52. MODULE-SOURCE

The filename of the source code of the program (as specified on the “cobc” command when the program was compiled)
is returned by this function.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also…

The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.53. MODULE-TIME

This function returns the time the GNU COBOL program was compiled, in the form HHMMSS.

The following sample main program uses all the MODULE- Functions

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DEMOMODULE.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 REPOSITORY.
 FUNCTION ALL INTRINSIC.
 PROCEDURE DIVISION.
 000-Main.
 DISPLAY "MODULE-CALLER-ID = [" MODULE-CALLER-ID "]"
 DISPLAY "MODULE-DATE = [" MODULE-DATE "]"
 DISPLAY "MODULE-FORMATTED-DATE = [" MODULE-FORMATTED-DATE "]"
 DISPLAY "MODULE-ID = [" MODULE-ID "]"
 DISPLAY "MODULE-PATH = [" MODULE-PATH "]"
 DISPLAY "MODULE-SOURCE = [" MODULE-SOURCE "]"
 DISPLAY "MODULE-TIME = [" MODULE-TIME "]"
 STOP RUN
 .

The program produces this output when executed:

MODULE-CALLER-ID = []
MODULE-DATE = [20120614]
MODULE-FORMATTED-DATE = [Jun 14 2012 15:07:45]
MODULE-ID = [DEMOMODULE]
MODULE-PATH = [E:\Programs\Demos\DEMOMODULE.exe]
MODULE-SOURCE = [DEMOMODULE.cbl]
MODULE-TIME = [150745]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-30

6.1.14.54. MONETARY-DECIMAL-POINT

This function returns the character used to separate the integer portion from the fractional part of a monetary currency
value according to the rules currently in effect for the locale under which your program is running. On UNIX systems,
your locale is established via the LANG environment variable. On Windows, the Control Panel’s Regional and Language
Options define the locale.

Note that using the SPECIAL-NAMES paragraph’s DECIMAL-POINT IS COMMA setting will not affect the value returned
by this function.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

6.1.14.55. MONETARY-THOUSANDS-SEPARATOR

This function returns the character used to separate the thousands digit groupings of monetary currency values
according to the rules currently in effect for the locale under which your program is running. On UNIX systems, your
locale is established via the LANG environment variable. On Windows, the Control Panel’s Regional and Language
Options define the locale.

Note that using the SPECIAL-NAMES paragraph’s DECIMAL-POINT IS COMMA setting will not affect the value returned
by this function.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

6.1.14.56. NUMERIC-DECIMAL-POINT

This function returns the character used to separate the integer portion of a non-integer numeric item from the
fractional part according to the rules currently in effect for the locale under which your program is running. On UNIX
systems, your locale is established via the LANG environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Note that using the SPECIAL-NAMES paragraph’s DECIMAL-POINT IS COMMA setting will not affect the value returned
by this function.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

6.1.14.57. NUMERIC-THOUSANDS-SEPARATOR

This function returns the character used to separate the thousands digit groupings of numeric values according to the
rules currently in effect for the locale under which your program is running. On UNIX systems, your locale is established
via the LANG environment variable. On Windows, the Control Panel’s Regional and Language Options define the locale.

Note that using the SPECIAL-NAMES paragraph’s DECIMAL-POINT IS COMMA setting will not affect the value returned
by this function.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

6.1.14.58. NUMVAL(string)

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-31

The NUMVAL function converts a
string (a group item, USAGE
DISPLAY elementary item or
alphanumeric literal) to its
corresponding numeric value.

The string must have either of the formats shown here, where space represents a SPACE character and digit represents
one of the digit characters “0” through “9”. In addition, there must be at least one digit characters in the string.

If string does not conform to either of the formats shown here, a value of zero will be returned.

6.1.14.59. NUMVAL-C(string [, symbol])

This function converts a string (a group item, USAGE DISPLAY elementary item or alphanumeric literal) representing a
currency value to its corresponding numeric value.

The string must have either of the formats shown here, where space represents a SPACE character, digit represents one
of the digit characters “0” through “9” and currency represents a currency symbol (a “$”, for example). In addition,
there must be at least one digit characters in the string.

The optional symbol character represents the currency symbol (a single-character group item, USAGE DISPLAY
elementary item or alphanumeric literal) that may be used as the currency character in string. If no symbol is specified,
the value that would be returned by the CURRENCY-SYMBOL intrinsic function will be used.

See Also…

The CURRENCY-SYMBOL Intrinsic Function 6.1.7.11

6.1.14.60. NUMVAL-F(string)

This function converts a string (a group item, USAGE DISPLAY elementary item or alphanumeric literal) representing a
floating-point value to its corresponding numeric value.

The string must have the format shown here, where space represents a SPACE character and digit represents one of the
digit characters “0” through “9”. In addition, there must be at least one digit character in the string to the left of the “E”
character.

6.1.14.61. ORD(char)

Format 1:

Format 2:

[space…] [digit…] [. [digit…]] [space…] [space…]

+
-

DB
CR

[space…] [space…] [digit…] [. [digit…]] [space…]+
-

[space…] [currency] [space…] [digit…] [. [digit…]] [space…] [space…]

+
-

DB
CR

[space…] [space…] [currency] [space…] [digit…] [. [digit…]] [space…]+
-

Format 1:

Format 2:

[space…] [space…] [digit…] [. [digit…]] E [space…] digit… [space…]+
-

+
-

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-32

This function returns the ordinal position in the program characterset (usually ASCII) corresponding to the 1
st

 character
of the char argument (a group item, USAGE DISPLAY elementary item or alphanumeric literal). For example, assuming
the program is using the standard ASCII collating sequence, ORD(“!”) returns 34 because “!” is the 34

th
 ASCII character.

If you are using this function to convert an ASCII character to its numeric value, you must subtract one from the result.

The following code is an alternative approach when you just wish to convert an ASCII character to its numeric
equivalent:

01 Char-Value.
 05 Numeric-Value USAGE BINARY-CHAR.
.
.
.
 MOVE “character” TO Char-Value
 The Numeric-Value item now has the corresponding numeric value

6.1.14.62. ORD-MAX(char-1 [, char-2] …)

This function returns the ordinal position in the argument list corresponding to the argument whose 1
st

 character has
the highest position in the program collating sequence (usually ASCII). For example, assuming the program is using the
standard ASCII collating sequence, ORD-MAX(“Z”, “z", “!”) returns 2 because the ASCII character “z” occurs after “Z”
and “!” in the program collating sequence. Each char argument is a group item, USAGE DISPLAY elementary item or
alphanumeric literal

6.1.14.63. ORD-MIN(char-1 [, char-2] …)

This function returns the ordinal position in the argument list corresponding to the argument whose 1
st

 character has
the lowest position in the program collating sequence (usually ASCII). For example, assuming the program is using the
standard ASCII collating sequence, ORD-MIN(“Z”, “z", “!”) returns 3 because the ASCII character “!” occurs before “Z”
and “z” in the program’s collating sequence. Each char argument is a group item, USAGE DISPLAY elementary item or
alphanumeric literal

6.1.14.64. PI

This function returns the mathematical constant “PI”. The maximum precision with which this value may be returned is
3.1415926535897932384626433832795029.

Since the PI function has no arguments, no parenthesis should be specified.

6.1.14.65. PRESENT-VALUE(rate, value-1 [, value-2])

The PRESENT-VALUE function returns a value that approximates the present value of a series of future period-end
amounts specified by the various value arguments at a discount rate specified by the rate argument. All arguments are
PIC 9 items and/or numeric literals.

The following formula summarizes the functions operation: ∑

6.1.14.66. RANDOM [(seed)]

The RANDOM function returns a non-integer value in the range 0 to 1 (for example, 0.123456789).

If seed is specified, it must be zero or a positive integer (specified as a PIC 9 item and/or numeric literal). It is used as
the seed value to generate a sequence of pseudo-random numbers.

If a subsequent reference specifies seed, a new sequence of pseudo-random numbers is started.

If the first executed reference to this function does not specify a seed, the seed will be supplied by the compiler.

In each case, subsequent references without specifying a seed return the next number in the current sequence.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-33

6.1.14.67. RANGE(number-1 [, number-2] …)

The RANGE function returns a value that is equal to the value of the maximum number in the argument list minus the
value of the minimum number argument. All arguments are numeric data items and/or numeric literals.

6.1.14.68. REM(number, divisor)

This function returns a numeric value that is the remainder of number divided by divisor. Both arguments must be
numeric data items or numeric literals.

The result is determined according to the following formula:

number - (divisor * FUNCTION INTEGER-PART (number / divisor))

6.1.14.69. REVERSE(string)

This function returns the byte-by-byte reversed value of the specified string (a group item, USAGE DISPLAY elementary
item or alphanumeric literal).

6.1.14.70. SECONDS-FROM-FORMATTED-TIME(format, time)

This function decodes a string whose value represents a formatted time and returns the total number of seconds that
string represents. The time string must contain hours, minutes and seconds. The time argument may be specified as a
group item, USAGE DISPLAY elementary item or an alphanumeric literal.

The format argument is a string (a group item, USAGE DISPLAY elementary item or an alphanumeric literal)
documenting the format of time using “hh”, “mm” and “ss” to denote where the respective time information can be
found. Any other characters found in format represent character positions that will be ignored. For example, a format
of “hhmmss” indicates that time will be treated as a six-digit value where the first two characters are the number of
hours, the next two represent minutes and the last two represent seconds. Similarly, a format of “hh:mm:ss” states
that time will be an eight-character string where characters 3 and 6 will be ignored.

6.1.14.71. SECONDS-PAST-MIDNIGHT

This function returns the current time of day expressed as the total number of elapsed seconds since midnight.

6.1.14.72. SIGN(number)

The SIGN function returns a -1 if the value of number (a numeric literal or data item) is negative, a zero if the value of
number is exactly zero and a 1 if the value of number if greater than 0.

6.1.14.73. SIN(angle)

Determines and returns the trigonometric sine of the specified angle (a numeric literal or data item). The angle is
assumed to be a value expressed in radians.

6.1.14.74. SQRT(number)

The SQRT function returns a numeric value that approximates the square root of number (a numeric data item or literal
with a non-negative value).

6.1.14.75. STANDARD-DEVIATION(number-1 [, number-2] …)

This function returns the statistical standard deviation of the specified list numbers (these may be numeric data items or
literals).

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-34

6.1.14.76. STORED-CHAR-LENGTH(string)

Returns the length – in bytes – of the specified string (a group item, USAGE DISPLAY elementary item or alphanumeric
literal) minus the total number of trailing spaces, if any.

6.1.14.77. SUBSTITUTE(string, from-1, to-1 [, from-n, to-n])

This function parses the specified string, replacing all occurrences of the from-n strings with the corresponding to-n
strings. The from strings must match exactly with regard to value and case. The from strings do not have to be the
same length as the to strings. All arguments are group items, USAGE DISPLAY elementary items or alphanumeric
literals.

A null to string will be treated as a single SPACE.

6.1.14.78. SUBSTITUTE-CASE(string, from-1, to-1 [, from-n, to-n])

The SUBSTITUTE-CASE function operates the same as the SUBSTITUTE function, except that from string matching is
performed without regard for case. All arguments are group items, USAGE DISPLAY elementary items or alphanumeric
literals.

6.1.14.79. SUM(number-1 [, number-2] …)

The SUM function returns a value that is the sum of the number arguments (these may be numeric data items or
literals).

6.1.14.80. TAN(angle)

Determines and returns the trigonometric tangent of the specified angle (a numeric literal or data item). The angle is
assumed to be a value expressed in radians.

6.1.14.81. TEST-DATE-YYYYMMDD(date)

Determines if the supplied date (a numeric integer data item or literal) is a valid date of the form yyyymmdd and that
the date is in the range 1601/01/01 to 9999/12/31. If it is, a 0 value is returned. If it isn’t, a value of 1, 2 or 3 is
returned signaling the problem lies with the year, month or day, respectively.

6.1.14.82. TEST-DAY-YYYYDDD(date)

Determines if the supplied date (a numeric integer data item or literal) is a valid date of the form yyyyddd and that the
date is in the range 1601001 to 9999365. If it is, a 0 value is returned. If it isn’t, a value of 1 or 2 is returned signaling
the problem lies with the year or day, respectively.

6.1.14.83. TEST-NUMVAL(string)

The TEST-NUMVAL function evaluates the specified string (a group item, USAGE DISPLAY elementary item or
alphanumeric literal) for being appropriate for use as the string argument to a NUMVAL function, returning a TRUE
value if it is appropriate and FALSE otherwise.

See Also…

The NUMVAL Intrinsic Function 6.1.14.58

6.1.14.84. TEST-NUMVAL-C(string [, symbol])

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-35

 The TEST-NUMVAL-C function evaluates the specified string (a group item, USAGE DISPLAY elementary item or
alphanumeric literal) and symbol combination for being appropriate for use as the arguments to a NUMVAL-C function,
returning a TRUE value if they are appropriate and FALSE otherwise.

See Also…

The NUMVAL-C Intrinsic Function 6.1.14.59

6.1.14.85. TEST-NUMVAL-F(string)

 This function evaluates the specified string (a group item, USAGE DISPLAY elementary item or alphanumeric literal) for
being appropriate for use as the string argument to a NUMVAL-F function, returning a TRUE value if it is appropriate
and FALSE otherwise.

See Also…

The NUMVAL-F Intrinsic Function 6.1.7.60

6.1.14.86. TRIM(string[, LEADING|TRAILING])

This function removes leading or trailing spaces from the specified string (a group item, USAGE DISPLAY elementary
item or alphanumeric literal). The second argument is specified as a keyword, not a quoted string or identifier. If no
second argument is specified, both leading and trailing spaces will be removed.

6.1.14.87. UPPER-CASE(string)

This function returns the value of string (a group item, USAGE DISPLAY elementary item or alphanumeric literal),
converted entirely to upper case. Note that what constitutes a “letter” (or upper/lower case too, for that manner) may
be influenced through the use of CHARACTER CLASSIFICATION specifications in the OBJECT-COMPUTER paragraph.

See Also…

The OBJECT-COMPUTER Paragraph 4.1.2

6.1.14.88. VARIANCE(number-1 [, number-2] …)

This function returns the statistical variance of the specified list numbers (these may be numeric data items or literals).

6.1.14.89. YEAR-TO-YYYY (yy [, yy-cutoff])

YEAR-TO-YYYY converts yy (a) - a two-digit year - to a four-digit format (yyyy). The optional yy-cutoff argument is the
year cutoff used to delineate centuries; if yy meets or exceeds this cutoff value, the result will be 19yy; if yy is less than
the cutoff, the result will be 20yy. The default cutoff value if no second argument is given will be 50. Both arguments
must be numeric data items or literals.

6.2. GNU COBOL Statements

The remaining sections in this chapter present (in alphabetical order) the various verbs (statements) that make up the
GNU COBOL procedural language.

6.2.1. ACCEPT

6.2.1.1. ACCEPT Format 1 – Read from Console

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-36

Figure 6-20 - ACCEPT (Read from Console) Syntax

This format of the ACCEPT verb is used to read a value from the console
window or the standard input device and store it into a data item
(identifier-1).

1. Mnemonic-name-1 must either be the built-in device name CONSOLE, STDIN, SYSIN or SYSIPT or a user-defined
(SPECIAL-NAMES) mnemonic name attached to one of those four device names.

2. If no FROM clause is specified, FROM CONSOLE is assumed.

3. Input will be read either from the console window (CONSOLE) or from the system-standard input (pipe 0 = STDIN,
SYSIN or SYSIPT) and will be saved in identifier-1.

4. If identifier-1 is a numeric data item, the character value read from the console or standard-input device will be
parsed according to the rules for “Format 1” input to the NUMVAL intrinsic function.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

The NUMVAL Intrinsic Function 6.1.14.58

6.2.1.2. ACCEPT Format 2 – Retrieve Command-Line Arguments

Figure 6-21 - ACCEPT (Command Line Arguments) Syntax

This format of the ACCEPT verb is used to retrieve
information from the programs command-line.

1. When you accept from the COMMAND-LINE option, you will retrieve the entire set of arguments entered on the
command line that executed the program, exactly as they were specified. Parsing that returned data into its
meaningful information will be your responsibility.

2. By accepting from ARGUMENT-NUMBER, you will be asking the GNU COBOL run-time system to parse the
arguments from the command-line and return the number of arguments found. Parsing will be conducted
according to the operating system’s rules, as follows:

 Arguments will be separated by treating SPACES between characters as the delineators between arguments.
The number of spaces separating two non-blank values is irrelevant.

 Strings enclosed in double-quote characters (“) will be treated as a single argument, regardless of how many
spaces (if any) might be imbedded within those quotation characters.

 On Windows systems, single-quote, or apostrophe characters (‘) will be treated just like any other data
character and will NOT delineate strings.

3. By accepting from ARGUMENT-VALUE, you will be asking the GNU COBOL run-time system to parse the arguments
from the command-line and return the “current” argument. You specify which argument number is “current” via
the DISPLAY … UPON ARGUMENT-NUMBER statement (section 0). Parsing or arguments will be conducted
according to the rules set forth in #2 above.

4. Attempts to retrieve non-existent arguments can be handled via an optional exception-handler.

See Also…

Handling Exceptions (ON EXCEPTION) 6.1.12.4

The DISPLAY Statement (Command Line) 6.2.12.2

6.2.1.3. ACCEPT Format 3 – Retrieve Environment Variable Values

ACCEPT identifier-1
[FROM mnemonic-name-1]

[END-ACCEPT]

ACCEPT identifier-1

COMMAND-LINE
FROM ARGUMENT-NUMBER

ARGUMENT-VALUE [exception-handler]

[END-ACCEPT]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-37

Figure 6-22 - ACCEPT (Environment Variable Values) Syntax

This format of the ACCEPT verb is used to retrieve
environment variable values.

1. By accepting from ENVIRONMENT-VALUE, you will be asking the GNU COBOL run-time system to retrieve the value
of the environment variable whose name is currently in the ENVIRONMENT-NAME register. A value may be placed
into the ENVIRONMENT-NAME register using the DISPLAY statement.

2. A simpler approach to retrieving an environment variables value is to use “ACCEPT … FROM ENVIRONMENT”.
Using that form, you specify the environment variable to be retrieved right on the ACCEPT command itself.

3. The optional exception-handler may be used to detect requests to retrieve the values of non-existent environment
variables..

See Also…

Handling Exceptions (ON EXCEPTION) 6.1.12.4

The DISPLAY Statement (Environment) 6.2.12.3

6.2.1.4. ACCEPT Format 4 – Retrieve Full-Screen Data

ACCEPT identifier-1

FROM

[exception-handler]
[END-ACCEPT]

ENVIRONMENT-VALUE

ENVIRONMENT literal-1
identifier-2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-38

Figure 6-23 - ACCEPT (Retrieve Screen Data) Syntax

This format of the ACCEPT
verb is used to retrieve
data from a formatted
console window screen.

1. The following attribute-specification clauses are allowed on the ACCEPT statement – these are the same as those
allowed for SCREEN SECTION data items.

AUTO | AUTO-SKIP | AUTOTERMINATE FULL | LENGTH-CHECK REQUIRED | EMPTY-CHECK
BACKGROUND-COLOR HIGHLIGHT | LOWLIGHT REVERSE-VIDEO
BEEP | BELL LEFTLINE SECURE | NO-ECHO
BLINK OVERLINE UNDERLINE
FOREGROUND-COLOR PROMPT CHARACTER

2. If identifier-1 is defined in the SCREEN SECTION, any AT, attribute-specification LOWER, UPPER or SCROLL clauses
specified on the ACCEPT will be ignored.

3. The various AT clauses provide a means of positioning the cursor to a specific spot on the screen before the screen
is read. The literal-3 / identifier-4 value must be a four- or six-digit value with the 1

st
 half of the number indicating

the line where the cursor should be positioned and the second half indicating the column. There is no distinction
between using the word COLUMN or POSITION.

4. WITH options (including the various individual attribute-specifications) should be coded only once.

5. The SCROLL option will cause the entire contents of the screen to be scrolled UP or DOWN by the specified number
of lines before any value is displayed on the screen. It is possible to specify a SCROLL UP clause as well as a SCROLL
DOWN clause. If no LINES specification is made, “1 LINE” will be assumed.

6. The TIMEOUT option will cause the ACCEPT to wait no more than the specified number of seconds for input. The
wait count may be specified as a positive integer or a numeric data item with a positive value. Once the timeout
limit expires, ACCEPT will proceed as if the Enter key had been pressed with no data being entered. The keyword
TIME-OUT may be used as a synonym for TIMEOUT.

7. While supported syntactically, the CONVERSION and UPDATE options are non-functional.

8. When a Format 4 ACCEPT statement with a SCREEN SECTION item specified as identifier-1 is executed, an implied
DISPLAY of identifier-1 will occur before input is accepted. Coding an explicit “DISPLAY identifier-1” before an
“ACCEPT identifier-1” is redundant and will incur the performance penalty of painting the screen contents twice.

ACCEPT identifier-1

[FROM CRT] [MODE IS BLOCK]

AT

WITH

[exception-handler]

[END-ACCEPT]

integer-3
identifier-4

LINE NUMBER
integer-1
identifier-2

COLUMN
POSITION

NUMBER
integer-2
identifier-3

…

integer-4
identifier-5

attribute-specification …

LOWER | UPPER

SCROLL BY

TIMEOUT
TIME-OUT

CONVERSION

UPDATE

UP
DOWN

LINE
LINES

AFTER
integer-5
identifier-6

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-39

9. The optional exception-handler may be used to handle screen I/O errors.

10. After this format of the ACCEPT statement is executed, the programs CRT STATUS code identifier (section 4.1.4) will
be populated with one of the following:

Figure 6-24 - Screen ACCEPT CRT STATUS Codes

Code Meaning

0000 ENTER key pressed

1001 - 1064 F1 – F64

2001,2002 PgUp,PgDn
25

2003,2004,2006 Up Arrow,Down-Arrow,PrtSc
(Print Screen)

26

Code Meaning

2005 Esc
,27

8000 No data is available on screen ACCEPT

9000 Fatal screen I/O error

This value will indicates what special key was pressed to terminate the ACCEPT.

The actual key pressed to generate a function key (Fn) will depend on the type of terminal device you’re using (PC,
Macintosh, VT100, etc.) and what type of enhanced display driver was configured with the version of GNU COBOL
you’re using. For example, on a GNU COBOL built for a Windows PC using MinGW and PDCurses, F1-F12 are the
actual F-keys on the PC keyboard, F13-F24 are entered by shifting the F-keys, F25-F36 are entered by holding Ctrl
while pressing an F-key and F37-F48 are entered by holding Alt while pressing an F-key. On the other hand, a GNU
COBOL implementation built for Windows using Cygwin and NCurses treats the PCs F1-F12 keys as the actual F1-
F12, while shifted F-keys will enter F11-F20. With Cygwin/NCurses, Ctrl- and Alt-modified F-keys aren’t recognized.
Neither are Shift-F11 or Shift-F12.

Numeric keypad keys are not recognizable on Windows MinGW/PDCurses builds of GNU COBOL, regardless of
NumLock settings. Windows Cygwin/NCurses builds recognize numeric keypad inputs properly. Although not
tested during the preparation of this documentation, I would expect native Windows builds using PDCurses to
behave as MinGW builds do and native Unix builds using NCurses to behave as do Cygwin builds.

The CRT STATUS field the status code is saved into will be either COB-CRT-STATUS, if the CRT STATUS clause was
not specified in the SPECIAL-NAMES paragraph, or the programmer-specified identifier if that clause was specified
in SPECIAL-NAMES.

See Also…

Defining Screens 5.2.2

Handling Exceptions (ON EXCEPTION) 6.1.12.4

6.2.1.5. ACCEPT Format 5 – Retrieve Date/Time

Figure 6-25 - ACCEPT (Retrieve Date/Time) Syntax

This format of the ACCEPT verb is used to retrieve the current
system date, time or current day of the week and store it into a data
item.

1. The data retrieved from the system, and the format in which it is structured, will vary according to the following
chart:

Figure 6-26 - ACCEPT Options for DATE/TIME Retrieval

ACCEPT Option Data Returned identifier-1 Format

DATE Current date in Gregorian form
(two-digit year)

01 CURRENT-DATE.
 05 CD-YEAR PIC 9(2).
 05 CD-MONTH PIC 9(2).
 05 CD-DAY-OF-MONTH PIC 9(2).

25

 These keys are available only if the environment variable COB_SCREEN_EXCEPTIONS is set to any non-blank value at runtime.
26

 These keys are not detectable on Windows systems
27

 This key is available only if the environment variable COB_SCREEN_ESC is set to any non-blank value at runtime (this is in
addition to setting COB_SCREEN_EXCEPTIONS)

ACCEPT identifier-1
DATE [YYYYMMDD]
DAY [YYYYDDD]
DAY-OF-WEEK
TIME

[END-ACCEPT]

FROM

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-40

ACCEPT Option Data Returned identifier-1 Format

DATE YYYYMMDD Current date in Gregorian form
(four-digit year)

01 CURRENT-DATE.
 05 CD-YEAR PIC 9(4).
 05 CD-MONTH PIC 9(2).
 05 CD-DAY-OF-MONTH PIC 9(2).

DAY Current date in Julian form
(two-digit year)

01 CURRENT-DATE.
 05 CD-YEAR PIC 9(2).
 05 CD-DAY-OF-YEAR PIC 9(3).

DAY YYYYDDD Current date in Julian form
(four-digit year)

01 CURRENT-DATE.
 05 CD-YEAR PIC 9(4).
 05 CD-DAY-OF-YEAR PIC 9(3).

DAY-OF-WEEK Current day of the week 01 CURRENT-DATE.
 05 CD-DAY-OF-WEEK PIC 9(1).
 88 MONDAY VALUE 1.
 88 TUESDAY VALUE 2.
 88 WEDNESDAY VALUE 3.
 88 THURSDAY VALUE 4.
 88 FRIDAY VALUE 5.
 88 SATURDAY VALUE 6.
 88 SUNDAY VALUE 7.

TIME Current time 01 CURRENT-TIME.
 05 CT-HOURS PIC 9(2).
 05 CT-MINUTES PIC 9(2).
 05 CT-SECONDS PIC 9(2).
 06 CT-HUNDREDTHS-OF-SECS PIC 9(2).

6.2.1.6. ACCEPT Format 6 - Retrieve Screen Information

Figure 6-27 - ACCEPT (Retrieve Screen Information) Syntax

This format of the ACCEPT verb is used to retrieve
information about the console window or about the
user’s interactions with it.

1. The LINES and COLUMNS options will retrieve the respective components of the size of the console display. When
the console is running in a windowed environment, this will be the sizing of the window in which the program is
executing, in terms of horizontal (COLUMNS) or vertical (LINES) character counts – not pixels. When the system is
not running a windowing environment, the physical console screen attributes will be returned. In environments
such as a Windows console window, where the logical size of the window may far exceed that of the physical
console window, the size returned will be that of the physical console window. If necessary, the screen will be
initialized so that the screen window size may be determined. Values of 0 will be returned if GNU COBOL was not
generated to include screen I/O.. Compare this result with that of the CBL_GET_SCR_SIZE built-in subroutine.

2. The LINE NUMBER option is a synonym for LINES and the word COLUMNS may be specified as COLS.

3. The ESCAPE KEY option may be used after a format 4 ACCEPT has been used to retrieve data off a formatted
screen. The result returned will be the four-digit key id of the special key that was pressed to terminate the format
4 ACCEPT (a 0000 is returned for the Enter key). This value will be the same as that returned into the CRT STATUS
field defined in the SPECIAL-NAMES paragraph or into the COB-CRT-STATUS identifier if no CRT STATUS was
specified. Consult Figure 6-23 for a list of possible values.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

The CBL_GET_SCR_SIZE Subroutine 8.3.1.30

6.2.1.7. ACCEPT Format 7 – Retrieve Run-Time Information

ACCEPT identifier-1
LINES | LINE-NUMBER
COLUMNS | COLS
ESCAPE KEY

[END-ACCEPT]

FROM

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-41

Figure 6-28 - ACCEPT (Retrieve Run-Time Information) Syntax

This format of the ACCEPT verb is used to retrieve run-time
information such as the most-recent error exception code and
the current user’s user name.

1. The specified identifier must be defined as a PIC X(4) item to receive EXCEPTION STATUS. When receiving USER
NAME, the identifier should be large enough to receive the longest user name on your system. If insufficient space
is allocated, the returned value will be truncated. If excess space is allocated, the returned value will be padded
with SPACES (to the right).

2. The most-recently encountered runtime error status will be returned in the identifier (‘0000’ if no error has
occurred) when issuing an ACCEPT … FROM EXCEPTION STATUS.

3. The following table summarizes the current run-time error exception codes.

Figure 6-29 - Run-Time Exception Code Values

Exception Code
Returned to ACCEPT

Error Type String Returned by the
EXCEPTION-STATUS Function

Description

0101 EC-ARGUMENT-FUNCTION Function argument error

0202 EC-BOUND-ODO OCCURS ... DEPENDING ON data item out of
bounds

0204 EC-BOUND-PTR Data-pointer contains an address that is out of
bounds

0205 EC-BOUND-REF-MOD Reference modifier out of bounds

0207 EC-BOUND-SUBSCRIPT Subscript out of bounds

0303 EC-DATA-INCOMPATIBLE Incompatible data exception

0500 EC-I-O input-output exception

0501 EC-I-O-AT-END I-O status "1x"

0502 EC-I-O-EOP An end of page condition occurred

0504 EC-I-O-FILE-SHARING I-O status "6x"

0505 EC-I-O-IMP I-O status "9x"

0506 EC-I-O-INVALID-KEY I-O status "2x"

0508 EC-I-O-LOGIC-ERROR I-O status "4x"

0509 EC-I-O-PERMANENT-ERROR I-O status "3x"

050A EC-I-O-RECORD-OPERATION I-O status "5x"

0601 EC-IMP-ACCEPT Implementation-defined accept condition

0602 EC-IMP-DISPLAY Implementation-defined display condition

0A00 EC-OVERFLOW Overflow condition

0A02 EC-OVERFLOW-STRING STRING overflow condition

0A03 EC-OVERFLOW-UNSTRING UNSTRING overflow condition

0B05 EC-PROGRAM-NOT-FOUND Called program not found

0D03 EC-RANGE-INSPECT-SIZE Size of replace item in inspect differs

1000 EC-SIZE Size error exception

1004 EC-SIZE-OVERFLOW Arithmetic overflow in calculation

1005 EC-SIZE-TRUNCATION Significant digits truncated in store

1007 EC-SIZE-ZERO-DIVIDE Division by zero

1202 EC-STORAGE-NOT-ALLOC The data-pointer specified in a FREE statement
does not identify currently allocated storage

1203 EC-STORAGE-NOT-AVAIL The amount of storage requested by an ALLOCATE
statement is not available

4. When using ACCEPT … FROM USER NAME, the returned result is the userid that was used to login to the system
with, and not any actual first and/or last name of the user in question (unless, of course, that is the information
used as a logon id).

ACCEPT identifier-1
EXCEPTION STATUS
USER NAME

[END-ACCEPT]

FROM

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-42

6.2.2. ADD

6.2.2.1. ADD Format 1 – ADD TO

Figure 6-30 - ADD (TO) Syntax

This format of the ADD statement generates the
arithmetic sum of all arguments that appear before the
TO (identifier-1 or literal-1) and then adds that sum to
each of the identifiers listed after the TO (identifier-2).

1. Identifier-1 and identifier-2 must be numeric unedited data items while literal-1 must be a numeric literal.

2. The value(s) specified before the “TO” keyword will be added together, and that sum will be added onto each of
the identifiers specified after the “TO” keyword (identifier-2), in turn.

3. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

6.2.2.2. ADD Format 2 – ADD GIVING

Figure 6-31 - ADD (GIVING) Syntax

This format of the ADD statement generates the
arithmetic sum of all arguments that appear before
the TO (identifier-1 or literal-1), adds that sum to
the contents of identifier-2 (if any) and then
replaces the contents of the identifiers listed after
the GIVING (identifier-3) with that sum.

1. Identifier-1 and identifier-2 must be numeric unedited data items, identifier-3 must be a numeric (edited or
unedited) data item and literal-1 must be a numeric literal.

2. The value(s) specified before the “TO” keyword will be added together, and that sum will be added to the value of
identifier-2 (if any). The contents of identifier-2 are not altered. The resulting sum is then saved to each of the
identifiers specified after the “GIVING” keyword (identifier-3), in turn. Unless also specified as one of the identifier-
1 items or as the identifier-2 item, none of the identifier-3 items will be involved in the calculation other than simply
serving as the receiving field(s) of the operation.

3. The optional “rounding-option” clause available to each identifier-3 will control how non-integer results will be
saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

ADD { } …

TO { identifier-2 [rounding-option] } …

[size-error-clause]

[END-ADD]

literal-1
identifier-1

ADD { } …

[TO identifier-2]

GIVING { identifier-3 [rounding-option] } …

[size-error-clause]

[END-ADD]

literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-43

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

6.2.2.3. ADD Format 3 – ADD CORRESPONDING

Figure 6-32 - ADD (CORRESPONDING) Syntax

This format of the ADD statement generates code
equivalent to individual ADD TO statements for
corresponding matches of data items found subordinate
to the two identifiers.

1. When corresponding matches are established, the effect of an ADD CORRESPONDING on those matches will be as
if a series of individual ADD Format 1 statements were done – one for each match.

2. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

3. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also…

The CORRESPONDING Clause 6.1.12.2

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

ADD CORRESPONDING identifier-1
TO identifier-2 [rounding-option]

[size-error-clause]
[END-ADD]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-44

6.2.3. ALLOCATE

Figure 6-33 - ALLOCATE Syntax

The ALLOCATE statement is used to dynamically allocate
memory at run-time.

1. If used, expression-1 must be an arithmetic expression with a non-zero positive integer value.

2. If used, identifier-1 should be an 01-level item defined with the BASED attribute in WORKING-STORAGE or LOCAL-
STORAGE. It can be an 01 item defined in the LINKAGE SECTION without the BASED option, but using such a data
item is not recommended.

3. If used, identifier-2 should be a USAGE POINTER data item.

4. The optional RETURNING clause will return the address of the allocated memory block into the specified USAGE
POINTER item. When this option is used, GNU COBOL will retain knowledge of the originally-requested size of the
allocated memory block in case a FREE statement is ever issued against that USAGE POINTER item.

5. When the “identifier-1” option is used in conjunction with INITIALIZED, the allocated memory block will be
initialized according to the PICTURE and (if any) VALUE clauses present in the definition of identifier-1 as if an
INITIALIZE identifier-1 WITH FILLER ALL TO VALUE THEN TO DEFAULT were executed once identifier-1 was
allocated.

6. When the “expression-1 CHARACTERS” option is used, INITIALIZED will initialize the allocated memory block to
binary zeros.

7. If the INITIALIZED clause is not used, the initial contents of allocated memory will be left to whatever rules of
memory allocation are in effect for the operating system the program is running under.

8. There are two basic ways in which this statement is used. The simplest is:

ALLOCATE My-01-Item

With this form, a block of storage equal in size to the defined size of My-01-Item (which must have been defined
with the BASED attribute) will be allocated. The address of that block of storage will become the base address of
My-01-Item so that it and its subordinate data items become usable within the program.

A second (and equivalent) approach is:

ALLOCATE LENGTH OF My-01-Item CHARACTERS RETURNING The-Pointer.
SET ADDRESS OF My-01-Item TO The-Pointer.

9. Referencing a BASED data item either before its storage has been ALLOCATEd or after its storage has been FREEd
will lead to unpredictable results

28
.

See Also…

The DATA DIVISION 5

Dynamically Allocated Items (BASED) 5.2.1.2

Storage Format of Data (USAGE) 5.2.1.11

The FREE Statement 6.4.17

The INITIALIZE Statement 6.2.22

28
 The COBOL standards like to use the term “unpredictable results” to indicate any sort of unexpected or undesirable

behavior – the results in this case probably are predictable though – the program will probably abort from
attempting to access an invalid address.

ALLOCATE

[INITIALIZED]

[RETURNING identifier-2]

expression-1 CHARACTERS
identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-45

6.2.4. ALTER

Figure 6-34 - ALTER Syntax

The ALTER verb was used in the early years of the
COBOL language to edit a program, changing a “GO

TO” statement at run time to branch to a spot

in the program different than where the GO TO
statement was originally compiled for.

1. Support for the ALTER verb has been added to GNU COBOL for the purpose of enabling GNU COBOL to pass those
National Institute of Standards and Technology (NIST) tests for the COBOL programming language that require
support for the ALTER verb.

2. Use of this statement is STRONGLY discouraged because it’s use makes it extremely difficult to know where a
potentially ALTER-able GO TO statement is actually going to at run time.

ALTER procedure-name-1 TO PROCEED TO procedure-name-2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-46

6.2.5. CALL

Figure 6-35 - CALL Syntax

The CALL statement is used to transfer control to a sub-
program, called a subroutine.

Chapter 7 deals with the specifics of using subprograms
with GNU COBOL programs.

1. The expectation is that the subroutine will eventually return control back to the CALLing program, at which point
the CALLing program will resume execution starting with the statement immediately following the CALL.
Subprograms are not required to return to their CALLers, however, and are free to halt program execution if they
wish.

2. The mnemonic-name-1 / STATIC / STDCALL option, if used, affects the linkage conventions that will be used to the
subroutine being called, as follows:

a. The STATIC option will cause the linkage to the subroutine to be performed in such a way as to require the
subroutine to be statically-linked with the calling program. Note that this enables static-linking to be used on a
subroutine-by-subroutine selective basis.

b. The STDCALL option allows system-standard calling conventions (as opposed to GNU COBOL calling
conventions) to be used when calling a subroutine. The definition of what consititutes “system standard” may
vary from operating system to operating system. Use of this requires special knowledge about the linkage
requirements of subroutines you are intending to CALL. Subroutines written in GNU COBOL do not need this
option.

c. The mnemonic-name option allows a custom-defined calling convention to be used. Such mnemonic names
are defined using the CALL-CONVENTION clause of the SPECIAL-NAMES paragraph. That clause associates a
decimal integer value with mnemonic-name-1 such that the individual bits set on or off in the binary number
corresponding to the integer affect linkage to the subroutine as described in the following chart. Those rows of
the chart that are greyed-out represent bit positions (switch settings) in the integer value that are currently
accepted if (to provide compatibility to other COBOL implementations) coded, but are otherwise unsupported.

Bit
Position

Decimal
Value If

1

Meaning if 0 Meaning if 1

0
(right-
most)

1 Subroutine arguments will be processed in right-
to-left sequence

Subroutine arguments will be
passed in left-to-right sequence

1 2 The calling program will flush processed
arguments from the argument stack

The called program (subroutine)
will flush processed arguments
from the argument stack

2 4 The RETURN-CODE register will be updated in
addition to any RETURNING/GIVING data item

The RETURN-CODE register will
not be updated (but any
RETURNING/GIVING data item
still will)

CALL

[USING argument-1 …]

[RETURNING|GIVING identifier-2]

[overflow-clause | exception-clause]

[END-CALL]

literal-1
identifier-1

STDCALL
STATIC
mnemonic-name-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-47

Bit
Position

Decimal
Value If

1

Meaning if 0 Meaning if 1

3 8 If CALL “literal” is used, the subroutine will be
located and linked in with the calling program at
compile time or may be dynamically located and
loaded at execution time, depending on
compiler switch settings and operating system
capabilities.

If CALL “literal” is used, the
subroutine can only be located
and linked with the calling
program at compilation time.

4 16 OS/2 “OPTLINK” conventions will not be used to
CALL the subprogram.

OS/2 “OPTLINK” conventions
will be used to CALL the
subprogram.

5 32 Windows 16-bit “thunking” will not be in effect. Windows 16-bit “thunking” will
be used to CALL the subroutine
as a DLL.

6 64 The STDCALL convention will not be used. The STDCALL convention will be
used.

29

Using the “STDCALL” option on a CALL statement is equivalent to using a CALL-CONVENTION “8” (only bit 3 set)

Using the “STATIC” option on a CALL statement is equivalent to using a CALL CONVENTION 64 (only bit 6 set)

3. The RETURNING and GIVING keywords may be used interchangeably.

4. The value of literal-1 or identifier-1 is the entry-point of the subprogram you wish to CALL.

5. When you CALL a subroutine using identifier-1, you are forcing the runtime system to call a dynamically-loadable
module. The contents of identifier-1 will be the entry-point name within that module. If this is the first CALL to any
entry-point within the module, the contents of identifier-1 must be the name of the module itself (making it the
primary entry-point name within the module).

6. If the subprogram being called is a GNU COBOL program, and if that program had the INITIAL attribute specified on
its PROGRAM-ID clause, all of the subprogram’s DATA DIVISION data will be restored to its initial state each time
the subprogram is executed

30
. This [re]-initialization behavior will always apply to any data defined in the

subprogram’s LOCAL-STORAGE SECTION (if any), regardless of the use (or not) of INITIAL.

7. The USING clause defines a list of arguments that may be passed from the calling program to the subprogram. The
syntax used to specify an argument is as follows:

Figure 6-36 - Argument Format When CALLing a Subroutine

8. The manner in which an argument is passed to the subroutine depends upon it’s BY clause, if any, specified for the
arguments, as follows:

a. BY REFERENCE passes the address of the argument to the subprogram. If the subprogram changes the
contents of that argument, the change will be “visible” to the calling program.

b. BY CONTENT passes the address of a copy of the argument to the subprogram. If the subprogram changes the
value of such an argument, the original version of it back in the calling program remains unchanged.

29
 The STDCALL calling convention is the one required to use the Microsoft Win32 API

30
 This is regardless of which entry-point within the subprogram is CALLed

REFERENCE
BY CONTENT

VALUE

AUTO
[UNSIGNED] SIZE IS DEFAULT

integer-1

OMITTED

literal-2
identifier-2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-48

c. BY VALUE passes the value of the argument as the argument. This feature exists to provide compatibility with
C, C++ and other languages and would not normally be used when calling GNU COBOL subprograms.

d. If an argument lacks a BY REFERENCE, BY CONTENT or BY VALUE clause, the most-recently encountered “BY”
specification on that CALL statement will be assumed (or BY REFERENCE if there have been no “BY”
specifications specified yet).

e. No more than 36 arguments may be passed to a subroutine, unless the GNU COBOL compiler was built with a
specifically different argument limit specified for it..

9. The RETURNING clause allows you to specify a data item into which the subroutine should return a value. If you
use this clause on the CALL, the subroutine should include a RETURNING clause on its PROCEDURE DIVISION
header. Of course, a subroutine may pass a value back in any argument passed BY REFERENCE.

10. The optional overflow-clause or exception-clause (the two may be used interchangably) may be used to define
actions to be taken if the subroutine could not be located and/or loaded.

11. For additional information, see the documentation of the CANCEL,ENTRY,EXIT PROGRAM and GOBACK statements.

See Also…

The IDENTIFICATION DIVISION 3

The SPECIAL-NAMES Paragraph 4.1.4

The DATA DIVISION 5

Special Registers 6.1.13

Handling Exceptions (ON EXCEPTION) 6.1.12.4

Handling Overflow (ON OVERFLOW) 6.1.12.5

The CANCEL Statement 6.2.6

The ENTRY Statement 6.2.14

The EXIT PROGRAM Statement 6.2.16

The GOBACK Statement 6.2.19

Sub-programming 0

Compiling & Dynamic-Linking Programs 8.1.3.2

Compiling & Static-Linking Programs 8.1.3.3

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-49

6.2.6. CANCEL

Figure 6-37 - CANCEL Syntax

The CANCEL statement unloads the dynamically-loadable module containing the
entry-point specified as literal-1 or identifier-1 from memory.

1. If the dynamically-loadable module unloaded by the CANCEL is subsequently re-executed, all DATA DIVISION
storage for that dynamically-loadable module will once again be in its initial state.

See Also…

Sub-programming 0

Compiling & Dynamic-Linking Programs 8.1.3.2

CANCEL …
literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-50

6.2.7. CLOSE

Figure 6-38 - CLOSE Syntax

The CLOSE statement terminates the
program’s access to the specified
file(s).

1. The CLOSE statement may only be executed against files that have been successfully OPENed.

2. The REEL, UNIT, WITH LOCK and NO REWIND clauses are recognized syntactically but are otherwise non-functional
except for the fact that a successful CLOSE … NO REWIND will generate a FILE-STATUS value of 07 rather than 00.

3. A successful CLOSE will write any remaining unwritten record buffers to the file (similar to an UNLOCK) and release
any file locks for the file; regardless of OPEN mode. A closed file will then be no longer available for subsequent I/O
statements until it is once again OPENed.

4. When a LINE SEQUENTIAL or LINE ADVANCING file is CLOSEd, a final delimiter sequence will be written to the file
to signal the termination point of the final data record in the file. This will only be necessary if the final record
written to the file was written with the AFTER ADVANCING option.

See Also…

Types of Files 1.3.3.5

FILE-STATUS Values Figure
4-15

The OPEN Statement 6.4.29

The UNLOCK Statement 6.4.48

The WRITE Statement 6.4.50

CLOSE { file-name-1 } …
REEL|UNIT [FOR REMOVAL]
WITH LOCK
WITH NO REWIND

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-51

6.2.8. COMMIT

Figure 6-39 - COMMIT Syntax

The COMMIT statement performs an UNLOCK against
every currently-OPEN file, but does NOT CLOSE any of the
files.

1. See the UNLOCK statement for additional details.

See Also…

The CLOSE Statement 6.4.7

The UNLOCK Statement 6.4.48

COMMIT

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-52

6.2.9. COMPUTE

Figure 6-40 - COMPUTE Syntax

The COMPUTE statement provides a means of easily performing complex arithmetic operations with a single statement,
instead of using cumbersome and possibly confusing sequences of ADD, SUBTRACT, MULTIPLY and DIVIDE statements.

1. Each identifier-1 must be a numeric or numeric-edited data item.

2. The word EQUAL and the equals-sign (=) may be used interchangeably.

3. The optional “rounding-option” clause available to each identifier-1 will control how non-integer results will be
saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-1 is
insufficiently sized to hold the generated results.

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

The ADD Statement 6.4.2

The DIVIDE Statement 6.4.13

The MULTIPLY Statement 6.4.27

The SUBTRACT Statement 6.4.44

COMPUTE { identifier-1 [rounding-option] } … =|EQUAL arithmetic-expression-1
[size-error-clause]

[END-COMPUTE]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-53

6.2.10. CONTINUE

Figure 6-41 - CONTINUE Syntax

The CONTINUE statement is a no-operation statement, performing no action
whatsoever.

1. The CONTINUE statement is often used with IF statements as a place-holder for conditionally-executed code that is
not yet needed or not yet designed. The following two sentences are equivalent. One uses CONTINUE statements
to mark places where code may need to be inserted in the future.

“Minimalist” Coding
(Specifying only what is necessary)

Coding With CONTINUE
(Documenting where code might be needed someday)

IF A = 1
 IF B = 1
 DISPLAY ‘A=1 & B=1’ END-DISPLAY
 END-IF
ELSE
 IF A = 2
 IF B = 2
 DISPLAY ‘A=2 & B=2’ END-DISPLAY
 END-IF
 END-IF
END-IF

IF A = 1
 IF B = 1
 DISPLAY ‘A=1 & B=1’ END-DISPLAY
 ELSE
 CONTINUE
 END-IF
ELSE
 IF A = 2
 IF B = 2
 DISPLAY ‘A=2 & B=2’ END-DISPLAY
 ELSE
 CONTINUE
 END-IF
 ELSE
 CONTINUE
 END-IF
END-IF

Coding such as this is generally a matter of personal preference or site coding standards. There is no difference in
the object code generated by the two, so there isn’t a run-time efficiency issue (just one of “coding efficiency”).

2. Another IF-statement usage for CONTINUE is to avoid the use of NOT in the conditional expression coded on the IF
statement. This too is a personal and/or site standards issue. Here’s an example:

Without CONTINUE With CONTINUE

IF Action-Flag NOT = ‘I’ AND ‘U’
 DISPLAY ‘Invalid Action-Flag’
 EXIT PARAGRAPH
END-IF

IF Action-Flag = ‘I’ OR ‘U’
 CONTINUE
ELSE
 DISPLAY ‘Invalid Action-Flag’
 EXIT PARAGRAPH
END-IF

Because of the way COBOL (GNU COBOL included) handles the abbreviation of conditional expressions, the
conditional expression in the left-hand box is actually a short-hand version of the (not-so-intuitive):

IF Action-Flag NOT = ‘I’ AND Action-Flag NOT = ‘U’

Inexperienced COBOL programmers would have coded the “IF” (incorrectly) as “IF Action-Flag NOT = ‘I’ OR
‘U’”, because it’s basically how one might say it if describing the logic; this is sure to cause run-time problems as it
actually represents “IF Action-Flag NOT = ‘I’ OR Action-Flag NOT = ‘U’ – not the same thing at all!

This causes many programmers to consider the code in the right-hand box to be more readable, even though it is a
little longer.

See Also…

The IF Statement 6.2.21

CONTINUE

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-54

6.2.11. DELETE

Figure 6-42 - DELETE Syntax

The DELETE statement logically deletes a record from an
ORGANIZATION RELATIVE or ORGANIZATION INDEXED
file.

1. The ORGANIZATION of file-name-1 must be RELATIVE or INDEXED.

2. For RELATIVE or INDEXED files in the SEQUENTIAL access mode, the last input-output statement executed for file-
name prior to the execution of the DELETE statement must have been a successfully executed sequential-format
READ statement. That READ will therefore identify the record to be deleted.

3. If file-name-1 is a RELATIVE file whose ACCESS MODE is either RANDOM or DYNAMIC, the record to be deleted is
the one whose relative record number is currently the value of the field specified as the files RELATIVE KEY in it’s
SELECT statement.

4. If file-name-1 is an INDEXED file whose ACCESS MODE is RANDOM or DYNAMIC, the record to be deleted is the
one whose primary key is currently the value of the field specified as the RECORD KEY in the file’s SELECT
statement.

5. An “invalid key” condition will exist, and can be dealt with via the invalid-key-clause, if the record specified to be
deleted by the RELATIVE KEY or RECORD KEY value does not exist in an access mode RANDOM or DYNAMIC file.
This is a condition that cannot exist for ACCESS MODE SEQUENTIAL files because of rule #2. DELETE failures on
ACCESS MODE SEQUENTIAL files can only be “handled” via DECLARATIVES (section).

6. No invalid-key-clause may be specified for a file who’s ACCESS MODE IS SEQUENTIAL.

See Also…

Types of Files 1.3.3.5

Defining File Characteristics (SELECT) 4.2.1

Handling Invalid Keys (INVALID KEY) 6.1.12.3

Using DECLARATIVES 6.1.4

The READ Statement 6.4.31

DELETE file-name-1 RECORD
[invalid-key-clause]

[END-DELETE]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-55

6.2.12. DISPLAY

6.2.12.1. DISPLAY Format 1 – “UPON “device”

Figure 6-43 - DISPLAY (Upon Console) Syntax

This format of the DISPLAY statement displays the
specified identifier contents and/or literal values on the
specified device.

1. If no UPON clause is specified, UPON CONSOLE will be assumed. If the UPON clause is specified, mnemonic-name-1
must be one of the built-in device names or a mnemonic name assigned to one of those devices via the SPECIAL-
NAMES paragraph of the CONFIGURATION SECTION.

2. The NO ADVANCING clause, if used, will suppress the normal carriage-return / line-feed sequence that normally is
added to the end of any console display. You can see an example of this at work in the sample program on page 6-
62.

3. The optional exception-handler may be used to deal with errors attempting to display to the output device.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

Built-in Device Names Figure
4-8

Handling Exceptions (ON EXCEPTION) 6.1.12.4

4.

6.2.12.2. DISPLAY Format 2 – Access Command-Line Arguments

Figure 6-44 - DISPLAY (Access Command-line Arguments) Syntax

This form of the DISPLAY statement may be used to specify the
command-line argument number to be retrieved by a
subsequent ACCEPT or to specify a new value for the command-
line arguments themselves.

1. By DISPLAYing a numeric integer value UPON ARGUMENT-NUMBER, you will specify which argument (by its
relative number) will be retrieved by a subsequent ACCEPT … FROM ARGUMENT VALUE statement.

2. Executing a DISPLAY … UPON COMMAND-LINE will influence subsequent ACCEPT … FROM COMMAND-LINE
statements (which will then return the DISPLAYed value), but will not influence subsequent ACCEPT … FROM
ARGUMENT-VALUE statements – these will continue to return the original program execution parameters.

3. The optional exception-handler may be used to deal any errorsthat occur at run-time.

See Also…

Handling Exceptions (ON EXCEPTION) 6.1.12.4

The ACCEPT Statement (Command Line) 6.2.1.2

DISPLAY …

[UPON mnemonic-name-1]

[WITH NO ADVANCING]

[exception-handler]

[END-DISPLAY]

literal-1
identifier-1

DISPLAY …

UPON

[exception-handler]

[END-DISPLAY]

literal-1
identifier-1

ARGUMENT-NUMBER
COMMAND-LINE

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-56

6.2.12.3. DISPLAY Format 3 – Access or Set Environment Variables

Figure 6-45 - DISPLAY (Access / Set Environment Variables) Syntax

This form of the DISPLAY statement can be used to create
or modify environment variables.

1. To create or change an environment variable will require two DISPLAY statements. The following example sets the
environment variable “MY_ENV_VAR” to a value of “Demonstration Value”:

DISPLAY “MY_ENV_VAR” UPON ENVIRONMENT-NAME
DISPLAY “Demonstration Value” UPON ENVIRONMENT-VALUE

2. Environment variables created or changed from within GNU COBOL programs will be available to any sub-shell
processes spawned by that program (i.e. CALL “SYSTEM”) but will not be known to the shell or console window that
started the GNU COBOL program.

3. Consider using SET ENVIRONMENT in lieu of DISPLAY to set environment variables as it is much simpler.

4. The optional exception-handler may be used to deal any errorsthat occur at run-time.

See Also…

Handling Invalid Keys (INVALID KEY) 6.1.12.3

The SET ENVIRONMENT Statement 6.4.39.1

6.2.12.4. DISPLAY Format 4 – Screen Data

Figure 6-46 - DISPLAY (Screen Data) Syntax

This format of the
DISPLAY statement
presents data onto a
formatted screen.

1. If identifier-1 is defined in the SCREEN SECTION, any at-clause, upon-clause and with-clause specified for that
identifier will be ignored, and all field positioning and screen control will occur as a result of the SCREEN SECTION
definition of identifier-1.

2. The purpose of the at-clause is to define where
on the screen identifier-1 should be displayed.
Consult the documentation for format 4 of the
ACCEPT statement (Screen Data) for additional
information.

3. The UPON clause, while supported syntactically, is otherwise non-functional
at this time.

DISPLAY …

UPON

[exception-handler]

[END-DISPLAY]

literal-1
identifier-1

ENVIRONMENT-VALUE
ENVIRONMENT-NAME

DISPLAY { identifier-1 [at-clause] [upon-clause] [with-clause] } …

[exception-handler]

[END-DISPLAY]

integer-3
identifier-3

LINE NUMBER
integer-1
identifier-1

COLUMN
POSITION

NUMBER
integer-2
identifier-2

…

AT

UPON
CRT
CRT-UNDER

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-57

4. The purpose of the with-clause
is to define the visual attributes
that should be applied to
identifier-1 when it is displayed
on the screen. Consult the
documentation for format 4 of
the ACCEPT statement (Screen
Data) for additional information.

The following attribute-
specification clauses are allowed
on a DISPLAY statement with-clause – these are the same as those allowed for SCREEN SECTION data items.

BACKGROUND-COLOR FOREGROUND-COLOR UNDERLINE
BEEP | BELL HIGHLIGHT | LOWLIGHT ERASE EOL | ERASE EOS
BLANK LINE | BLANK SCREEN OVERLINE
BLINK REVERSE-VIDEO

4. The optional exception-handler may be used to deal any screen I/O errorsthat occur at run-time.

See Also…

Defining Screens 5.2.2

Handling Exceptions (ON EXCEPTION) 6.1.12.4

The ACCEPT Statement (Screen Data) 6.4.1.4

integer-4
identifier-5

attribute-specification …

SCROLL BY

TIMEOUT
TIME-OUT

CONVERSION

UP
DOWN

LINE
LINES

AFTER
integer-5
identifier-6

WITH

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-58

6.2.13. DIVIDE

6.2.13.1. DIVIDE Format 1 – DIVIDE INTO

Figure 6-47 - DIVIDE INTO Syntax

This format of DIVIDE will divide
a specified value into one or
more data items, replacing the
value in each of those data items
with the result of its old value
divided by the identifier-1 or
literal-1 value. Any remainder
calculated as a result of the
division is discarded.

1. Identifier-1 and identifier-2 must be numeric unedited data items and literal-1 must be a numeric literal.

2. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

3. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

6.2.13.2. DIVIDE Format 2 – DIVIDE INTO GIVING

Figure 6-48 - DIVIDE INTO GIVING Syntax

This format of DIVIDE will divide a specified
value (identifier-1 or literal-1) into another value
(identifier-2 or literal-2) and will then replace
the contents of one or more receiving data
items (identifier-3 …) with the results of that
division.

Any remainder calculated as a result of the
division is discarded unless a REMAINDER clause
is present.

1. Identifier-1 and identifier-2 must be numeric unedited data items, identifier-3 and identifier-4 must be numeric
(edited or unedited) data items and literal-1 and literal-2 must be numeric literals.

2. The optional “rounding-option” clause available to each identifier-3 will control how non-integer results will be
saved.

3. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-3 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

DIVIDE INTO { identifier-2 [rounding-option] } …

[size-error-clause]

[END-DIVIDE]

literal-1
identifier-1

DIVIDE INTO

GIVING { identifier-3 [rounding-option] } …

[REMAINDER identifier-4]

[size-error-clause]

[END-DIVIDE]

literal-1
identifier-1

literal-2
identifier-2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-59

6.2.13.3. DIVIDE Format 3 – DIVIDE BY GIVING

Figure 6-49 - DIVIDE BY GIVING Syntax

This format of DIVIDE will divide a specified
value (identifier-1 or literal-1) by another value
(identifier-2 or literal-2) and will then replace
the contents of one or more receiving data
items (identifier-3 …) with the results of that
division.

Any remainder calculated as a result of the
division is discarded unless a REMAINDER clause
is present.

1. Identifier-1 and identifier-2 must be numeric unedited data items, identifier-3 and identifier-4 must be numeric
(edited or unedited) data items and literal-1 and literal-2 must be numeric literals.

2. The optional “rounding-option” clause available to each identifier-3 will control how non-integer results will be
saved.

3. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-3 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

DIVIDE BY

GIVING { identifier-3 [rounding-option] } …

[REMAINDER identifier-4]

[size-error-clause]

[END-DIVIDE]

literal-1
identifier-1

literal-2
identifier-2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-60

6.2.14. ENTRY

Figure 6-50 - ENTRY Syntax

The ENTRY statement is used to define an alternate entry-point
into a subroutine, along with the arguments that subroutine will
be expecting.

1. You may not use an ENTRY statement in a nested subprogram.

2. The USING clause defines the arguments the subroutine entry-point supports. This list of arguments must match
up against the USING clause of any CALL statements that will be invoking the subroutine using this entry-point.

3. Each argument-n specified on the ENTRY statement must be defined in the LINKAGE SECTION of the subprogram in
which the ENTRY statement exists.

4. The literal-1 value will specify the entry-point name of the subroutine. It must be specified exactly on CALL
statements (with regard to the use of upper- and lower-case letters) as it is specified on the ENTRY statement.

5. Each argument-n entry must follow the syntax shown to the right. The
usage of REFERENCE, CONTENT and VALUE on an argument should
match the manner in which that argument is being passed on the CALL
statement.

See Also…

The DATA DIVISION 5

The CALL Statement 6.4.5

Sub-programming 0

Details of Nested Subprograms 7.6

ENTRY literal-1 [USING argument-1 …]

BY identifier-1

REFERENCE
CONTENT
VALUE

Figure 6-51 - ENTRY Statement Argument Syntax

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-61

6.2.15. EVALUATE

Figure 6-52 - EVALUATE Syntax

The EVALUATE statement provides a means of defining processing that should take place under a multitude of
conditions.

1. There must be at least one WHEN clause specified on any EVALUATE statement. There may also be multiple WHEN
clauses specified.

2. There must be at least one selection-subject specified on the EVALUATE statement itself.
The syntax of a selection-subject is shown to the right.

3. Each selection subject will have its value matched against the corresponding selection object
value on every WHEN clause.

4. The first WHEN clause having each of its selection-object(s) successfully matched by the
corresponding selection-subject on the EVALUATE statement will be the one whose
imperative-statement-1 (if any) is executed. If the successfully matched WHEN clause does
not have its own imperative-statement-1 then the next imperative-statement-1 (on another
WHEN clause) following the WHEN that was matched will be executed.

5. If no WHEN clause has it’s imperative-statement-1 executed, then the WHEN OTHER clause’s imperative-
statement-2 will be executed (if WHEN OTHER was specified).

6. Once imperative-statement-1 or imperative statement-2 is executed (or would have been executed if it existed),
control will proceed with the statement following the END-EVALUATE.

7. The syntax of a selection-object is shown to
the right.

8. The reserved words THRU and THROUGH
may be used interchangeably.

9. When using THRU, the values on both sides
of the THRU must be the same class (both
numeric, both alphanumeric, etc.).

10. A partial-expression is one of the following:

a. A class-condition without a leading
identifier-1

b. A sign-condition without a leading identifier-1

c. A relation-condition with nothing to the left of the relational operator

11. In order for a selection-subject to match the corresponding selection-object on a WHEN clause, one of the following
must be true:

a. The selection-object is ANY

b. The value of the selection-subject is equal to the value of the selection object

c. The value of the selection-subject falls within the range specified by the THRU clause of the selection-object

d. If the selection-object is a partial-expression (see #10, above), then the true/false result that would be obtained
if the partial-expression is applied to the selection-subject must be true; this will be iollustrated in an upcoming
example

EVALUATE selection-subject-1 [ALSO selection-subject-2] …

{{ WHEN selection-object-1 [ALSO selection-object-2] } … [imperative-statement-1] } …

[WHEN OTHER imperative-statement-2]

[END-EVALUATE]

TRUE
FALSE
expression-1
identifier-1
literal-1

Syntax of a
selection-subject

ANY
TRUE
FALSE
partial-expression-1

expression-2
identifier-2
literal-2

expression-3
identifier-3
literal-3

THRU|THROUGH

Syntax of a selection-object

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-62

Here is a sample program that illustrates the EVALUATE statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DEMOEVALUATE.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Test-Digit PIC 9(1).
 88 Digit-Is-Odd VALUE 1, 3, 5, 7, 9.
 88 Digit-Is-Prime VALUE 1, 3, 5, 7.
 PROCEDURE DIVISION.
 P1. PERFORM UNTIL EXIT
 DISPLAY "Enter a digit (0 Quits): "
 WITH NO ADVANCING
 ACCEPT Test-Digit
 IF Test-Digit = 0
 EXIT PERFORM
 END-IF
 EVALUATE Digit-Is-Odd ALSO Digit-Is-Prime
 WHEN TRUE ALSO FALSE
 DISPLAY Test-Digit " is ODD"
 WITH NO ADVANCING
 WHEN TRUE ALSO TRUE
 DISPLAY Test-Digit " is PRIME"
 WITH NO ADVANCING
 WHEN FALSE ALSO ANY
 DISPLAY Test-Digit " is EVEN"
 WITH NO ADVANCING
 END-EVALUATE
 EVALUATE Test-Digit
 WHEN < 5
 DISPLAY " and it’s small too"
 WHEN < 8
 DISPLAY " and it’s medium too"
 WHEN OTHER
 DISPLAY " and it’s large too"
 END-EVALUATE
 END-PERFORM
 DISPLAY "Bye!"
 STOP RUN
 .

Console output when run (user input is highlighted):

Enter a digit (0 Quits): 1
1 is PRIME and it’s small too
Enter a digit (0 Quits): 2
2 is EVEN and it’s small too
Enter a digit (0 Quits): 3
3 is PRIME and it’s small too
Enter a digit (0 Quits): 4
4 is EVEN and it’s small too
Enter a digit (0 Quits): 5
5 is PRIME and it’s medium too
Enter a digit (0 Quits): 6
6 is EVEN and it’s medium too
Enter a digit (0 Quits): 7
7 is PRIME and it’s medium too
Enter a digit (0 Quits): 8
8 is EVEN and it’s large too
Enter a digit (0 Quits): 9
9 is ODD and it’s large too
Enter a digit (0 Quits): 0
Bye!

See Also…

Class Tests 6.1.4.2.2

Sign Tests 6.1.8.2.3

Relation Tests 6.1.8.2.5

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-63

6.2.16. EXIT

Figure 6-53 - EXIT Syntax

The EXIT statement is a multi-purpose statement; it may provide a
common end point for a series of procedures, exit an inline PERFORM, a
paragraph or a section or it may mark the logical end of a subprogram.

1. When used without any of the optional clauses,
the “EXIT” statement simply provides a common
“GO TO” end point for a series of procedures.
Figure 6-57 illustrates this usage of the EXIT
statement.

2. When an EXIT statement is used, it must be the
only statement in the paragraph in which it occurs.

3. The EXIT statement takes no other run-time
action.

Figure 6-54 - Using the EXIT Statement

4. An EXIT PARAGRAPH statement transfers control to a
point immediately past the end of the current
paragraph, while an EXIT SECTION statement causes
control to pass to point immediately past the last
paragraph in the current section.If the EXIT
PARAGRAPH or EXIT SECTION resides in a paragraph
within the scope of a procedural PERFORM, control will
be returned back to the PERFORM for evaluation of
any TIMES, VARYING and/or UNTIL clauses. It the EXIT
PARAGRAPH or EXIT SECTION resides outside the
scope of a procedural PERFORM, control simply
transfers to the first executable statement in the next
paragraph (EXIT PARAGRAPH) or section (EXIT
SECTION).

Figure 6-58 shows how the example shown in Figure
6-57 could have been coded without a GO TO by
utilizing an EXIT PARAGRAPH statement.

Figure 6-55 - Using EXIT PARAGRAPH

5. The EXIT PERFORM and EXIT PERFORM CYCLE statements are intended to be used in conjunction with an inline
PERFORM statement.

6. An EXIT PERFORM CYCLE will terminate the current iteration of the inline PERFORM, giving control to any TIMES,
VARYING and/or UNTIL clauses for them to determine if another cycle needs to be performed.

PROGRAM
FUNCTION
PERFORM [CYCLE]
SECTION
PARAGRAPH

EXIT

01 Switches.
05 Input-File-Switch PIC X(1).

88 EOF-On-Input-File VALUE ‘Y’ FALSE ‘N’.
.
.
.

SET EOF-On-Input-File TO FALSE.
PERFORM 100-Process-A-Transaction

THRU 199-Exit
UNTIL EOF-On-Input-File.

.

.

.
100-Process-A-Transaction.

READ Input-File AT END
SET EOF-On-Input-File TO TRUE
GO TO 199-Exit.

IF Input-Rec of Input-File = SPACES
GO TO 199-Exit. *> IGNORE BLANK RECORDS!

process the record just read
199-Exit.

EXIT.

01 Switches.
05 Input-File-Switch PIC X(1).

88 EOF-On-Input-File VALUE ‘Y’ FALSE ‘N’.
.
.
.

SET EOF-On-Input-File TO FALSE.
PERFORM 100-Process-A-Transaction
UNTIL EOF-On-Input-File.

.

.

.
100-Process-A-Transaction.

READ Input-File AT END
SET EOF-On-Input-File TO TRUE
EXIT PARAGRAPH.

IF Input-Rec of Input-File = SPACES
EXIT PARAGRAPH. *> IGNORE BLANK RECORDS!

process the record just read

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-64

7. An EXIT PERFORM will terminate the inline
PERFORM outright, transferring control to the first
statement following the PERFORM. Figure 6-59
shows the final modification to the Figure 6-57
example; by using Inline PERFORM and EXIT
PERFORM statements we can really streamline
processing.

Figure 6-56 - Using the EXIT PERFORM Statement

8. The EXIT PROGRAM and EXIT FUNCTION statements terminate the execution of a subroutine (i.e. a program that
has been CALLed by another) or user-defined function, respectively. An EXIT PROGRAM statement returns control
back to the statement following the CALL of the subprogram. An EXIT FUNCTION returns control back to the
processing of the statement in the calling program that invoked the user-defined function.

9. If executed by a main program, neither the EXIT PROGRAM nor EXIT FUNCTION statements are non-functional.
The EXIT PROGRAM statement is not legal anywhere within a user-defined function and EXIT FUNCTION cannot be
used anywhere within a subroutine. Neither may be used within a USE GLOBAL routine in DECLARATIVES.

10. The COBOL2002 standard has made a common extension to the COBOL language - the GOBACK statement – now a
standard language element; the GOBACK statement should be strongly considered as the preferred alternative to
EXIT PROGRAM and EXIT FUNCTION for new subprograms.

See Also…

Using DECLARATIVES 6.1.4

The CALL Statement 6.4.5

The GOBACK Statement 6.2.19

The GO TO Statement 6.2.20

The PERFORM Statement (Procedural) 6.2.30.1

The PERFORM Statement (Inline) 6.4.30.2

Sub-programming 0

Subprograms Subroutines vs Functions 7.1

PERFORM UNTIL EXIT
READ Input-File AT END

EXIT PERFORM
END-READ
IF Input-Rec of Input-File = SPACES

EXIT PERFORM CYCLE *> IGNORE BLANK RECORDS!
END-IF

process the record just read
END PERFORM

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-65

6.2.17. FREE

Figure 6-57 - FREE Syntax

The FREE statement releases memory previously
allocated to the program by the ALLOCATE statement.

1. Identifier-1 must be a USAGE POINTER data item or an 01-level data item with the BASED attribute.

2. If identifier-1 is a USAGE POINTER data item and it contains a valid address, the FREE statement will release the
memory block the pointer references. In addition, any BASED data items that the pointer was used to provide an
address for will become un-based and therefore un-usable. If identifier-1 did not contain a valid address, no action
will be taken.

3. If identifier-1 is a BASED data item and that data item is currently based (meaning it currently has memory
allocated for it), its memory is released and identifier-1 will become un-based and therefore un-usable. If identifier-
1 was not based, no action will be taken.

4. The ADDRESS OF clause adds no special function to the FREE statement.

See Also…

Dynamically Allocated Items (BASED) 5.2.1.2

Storage Format of Data (USAGE) 5.2.1.11

The ALLOCATE Statement 6.4.3

FREE { [ADDRESS OF] identifier-1 } …

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-66

6.2.18. GENERATE

Figure 6-58 - GENERATE Syntax

Although syntactically recognized by the GNU COBOL
compiler, the GENERATE statement is non-functional
because the RWCS (COBOL Report Writer Control System)
is not currently supported by GNU COBOL.

GENERATE
identifier-1
report-name-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-67

6.2.19. GOBACK

Figure 6-59 - GOBACK Syntax

The GOBACK statement is used to logically terminate an executing program.

1. If executed within a subprogram (i.e. a subroutine or user-defined function), GOBACK behaves like an EXIT
PROGRAM or EXIT FUNCTION statement, respectively.

2. If executed within a main program, GOBACK will act as a STOP RUN statement.

See Also…

The EXIT FUNCTION Statement 6.2.16

The EXIT PROGRAM Statement 6.2.16

The STOP RUN Statement 6.4.42

Sub-programming 0

3.

GOBACK

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-68

6.2.20. GO TO

6.2.20.1. GO TO Format 1 – Simple GO TO

Figure 6-60 - Simple GO TO Syntax

This form of the GO TO statement unconditionally transfers control in a program
to the specified procedure-name-1.

1. If procedure-name-1 is a section, control will transfer to the first paragraph in that section.

6.2.20.2. GO TO Format 2 – GO TO DEPENDING ON

Figure 6-61 – GO TO DEPENDING ON Syntax

This form of the GO TO statement will transfer control to any one of a
number of specified procedure names depending on the numeric value of
the identifier specified on the statement.

1. The PICTURE and/or USAGE of the specified identifier-1 must be such as to define it as a numeric, unedited,
preferably unsigned integer data item.

2. If the value of identifier-1 has the value 1, control will be transferred to the 1
st

 specified procedure name. If the
value is 2, control will transfer to the 2

nd
 procedure name, and so on.

3. If the value of identifier-1 is less than 1 or exceeds the total number of procedure names specified on the GO TO
statement, control will simply fall thru into the next statement following the GO TO.

4. The following table shows how GO TO DEPENDING ON may be used in a real application situation, and compares it
against the two alternatives – IF and EVALUATE.

Figure 6-62 - GOTO DEPENDING ON vs IF vs EVALUATE

GOTO DEPENDING ON IF EVALUATE

 GO TO PROCESS-ACCT-TYPE-1
 PROCESS-ACCT-TYPE-2
 PROCESS-ACCT-TYPE-3
 DEPENDING ON ACCT-TYPE.
 Code to handle invalid account type
 GO TO DONE-WITH-ACCT-TYPE.
PROCESS-ACCT-TYPE-1.
 Code to handle account type 1
 GO TO DONE-WITH-ACCT-TYPE.
PROCESS-ACCT-TYPE-2.
 Code to handle account type 2
 GO TO DONE-WITH-ACCT-TYPE.
PROCESS-ACCT-TYPE-3.
 Code to handle account type 3
DONE-WITH-ACCT-TYPE.

 IF ACCT-TYPE = 1
 Code to handle account type 1
 ELSE
 IF ACCT-TYPE = 2
 Code to handle account type 2
 ELSE
 IF ACCT-TYPE = 3
 Code to handle account type 3
 ELSE
 Code to handle invalid
 account type
 END-IF
 END-IF
 END-IF

 EVALUATE ACCT-TYPE
 WHEN 1
 Code to handle account type 1
 WHEN 2
 Code to handle account type 2
 WHEN 3
 Code to handle account type 3
 WHEN OTHER
 Code to handle invalid account type
 END-EVALUATE.

There is no question that “modern programming philosophy” would prefer the EVALUATE approach. An interesting
note is that the code generated by the IF and EVALUATE techniques is virtually identical.

See Also…

The EVALUATE Statement 6.2.15

The IF Statement 6.2.21

GO TO procedure-name-1

GO TO procedure-name-1 …
DEPENDING ON identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-69

6.2.21. IF

Figure 6-63 - IF Syntax

The IF statement is used to conditionally
execute an imperative statement or to select
one of two different imperative statements
based upon the TRUE/FALSE value of a
conditional expression.

1. If conditional-expression evaluates to true, imperative-statement-1 will be executed regardless of whether or not
an ELSE clause is present. Once imperative-statement-1 has been executed, control falls into the first statement
following the END-IF or to the first statement of the next sentence if there is no END-IF clause.

2. If the optional ELSE clause is present and conditional-expression-1 evaluates to false, then (and only then)
imperative-statement-2 will be executed. Once imperative-statement-2 has been executed, control falls into the
first statement following the END-IF or to the first statement of the next sentence if there is no END-IF clause.

3. The END-IF statement isn’t the only way the scope of an IF (or ELSE) can be terminated – the period character (.)
can be used also to terminate the IF/ELSE by ending the sentence in which it is coded.

See Also…

Conditional Expressions 6.1.8.2

Use of Periods (.) 6.1.5

IF conditional-expression THEN imperative-statement-1

[ELSE imperative-statement-2]

[END-IF]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-70

6.2.22. INITIALIZE

Figure 6-64 - INITIALIZE Syntax

 The INITIALIZE statement initializes each identifier-1 with certain specific values, depending upon the options specified.

1. From the sequence of identifier-1 data items specified on the INITIALIZE statement, a list of initializable fields,
referred to as the field list in the remainder of this section, will include:

a. Every identifier-1 that is an elementary item.

b. Every identifier-1 that is a group item will have each elementary item defined anywhere within its full
hierarchical structure included, excluding FILLER items.

c. If the optional WITH FILLER clause is included on the INITIALIZE statement, then rule #1.b above will include
FILLER items.

Any identifier-1 containing a REDEFINES in its definition will be included in the field list, but items defined
subordinate to any identifier-1 that contain REDEFINES in their descriptions (and any items subordinate to them as
well) will be excluded.

2. A category-name may be any of the following:

ALPHABETIC The PICTURE of any ALPHABETIC data item only contains A symbols

ALPHANUMERIC The PICTURE of any ALPHANUMERIC data item contains only A, X and 9 symbols (but all
A symbols is considered ALPHABETIC and all 9 symbols is considered NUMERIC)

ALPHANUMERIC-EDITED The PICTURE of any ALPHANUMERIC-EDITED data item is that it is an ALPHANUMERIC
data item that also contains B, 0 (zero) and/or slash (/) symbols

NUMERIC A NUMERIC data item is one that is described with one of the pictureless USAGEs (see
Figure 5-10) or has a PICTURE composed of nothing but P, 9, S and V symbols.

NUMERIC-EDITED The PICTURE of any NUMERIC-EDITED data item is one that must have a PICTURE
clause in it’s definition, and that clause contains nothing but the symbol 9 and any
editing symbol defined in Figure 5-7.

3. The behavior of an INITIALIZE without a VALUE or REPLACING clause (either with or without a DEFAULT clause) will
be to move zeros into every numeric or numeric-edited data item (as defined above) in the field list and, SPACES
into all remaining fields in the initializable field list.

4. The behavior of an INITIALIZE with a VALUE and/or REPLACING clause will be as follows:

a. If there is an “ALL TO VALUE” clause present then all data items in the field list having an explicit VALUE clause
coded in their description or having an implicit VALUE clause inherited from their parent group item will be
initialized to that compile-time value.

If there is a “category-name TO VALUE” clause present then all data items in the field list that fall into the
specified category (see the list above) and have either an explicit VALUE clause coded in their description or
have an implicit VALUE clause inherited from their parent group item will be initialized to that compile-time
value.

Any data items in the field list that get initialized by this rule will be excluded from the remaining rules.

INITIALIZE identifier-1 … [WITH FILLER]

[TO VALUE]

[THEN REPLACING { category-name DATA BY [LENGTH OF] } …]

[THEN TO DEFAULT]

literal-1
identifier-2

ALL
category-name

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-71

b. If there is a “REPLACING” clause present, then all data items in the fields list that weren’t initialized by rule #4.a
and that fall into the specified category (see the list above) will be initialized to the value specified by literal-1
or identifier-2. You may specify multiple “category-name BY value” clauses, but each must specify a unique
category-name.

Any data items in the field list that get initialized by this rule will be excluded from the remaining rules.

c. Finally, if there are any data items in the field list that weren’t initialized either by rule #4.a or #4.b and there is
a DEFAULT clause present, those remaining data items will be initialized according to rule #3.

The following example may help your understanding of how the INITIALIZE statement works. The sample code makes
use of the COBDUMP program documented in section 10.2 to dump the storage that is (or is not) being INITIALIZEd.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DemoInitialize.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Item-1.
 05 I1-A VALUE ALL '*'.
 10 FILLER PIC X(1).
 10 I1-A-1 PIC 9(1) VALUE 9.
 05 I1-B USAGE BINARY-CHAR.
 05 I1-C PIC A(1) VALUE 'C'.
 05 I1-D PIC X/X VALUE 'ZZ'.
 05 I1-E OCCURS 2 TIMES PIC 9.
 PROCEDURE DIVISION.
 000-Main.
 DISPLAY "MOVE HIGH-VALUES TO Item-1"
 PERFORM 100-Init-Item-1
 CALL "COBDUMP" USING Item-1
 DISPLAY " "

 DISPLAY "INITIALIZE Item-1"
 INITIALIZE Item-1
 CALL "COBDUMP" USING Item-1
 PERFORM 100-Init-Item-1
 DISPLAY " "

 DISPLAY "INITIALIZE Item-1 WITH FILLER"
 MOVE HIGH-VALUES TO Item-1
 INITIALIZE Item-1 WITH FILLER
 CALL "COBDUMP" USING Item-1
 PERFORM 100-Init-Item-1
 DISPLAY " "

 DISPLAY "INITIALIZE Item-1 ALL TO VALUE"
 MOVE HIGH-VALUES TO Item-1
 INITIALIZE Item-1 ALPHANUMERIC TO VALUE
 CALL "COBDUMP" USING Item-1
 PERFORM 100-Init-Item-1
 DISPLAY " "

 DISPLAY "INITIALIZE Item-1 REPLACING NUMERIC BY 1"
 MOVE HIGH-VALUES TO Item-1
 INITIALIZE Item-1 REPLACING NUMERIC BY 1
 CALL "COBDUMP" USING Item-1
 PERFORM 100-Init-Item-1
 DISPLAY " "

 STOP RUN
 .

 100-Init-Item-1.
 MOVE HIGH-VALUES TO Item-1
 .

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-72

When executed, this program produces the following output:

MOVE HIGH-VALUES TO Item-1
<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->
======== ==== === ================
00404058 1 FF FF FF FF FF FF FF FF FF

INITIALIZE Item-1
<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->
======== ==== === ================
00404058 1 FF 30 00 20 20 2F 20 30 30 .0. / 00

INITIALIZE Item-1 WITH FILLER
<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->
======== ==== === ================
00404058 1 20 30 00 20 20 2F 20 30 30 0. / 00

INITIALIZE Item-1 ALL TO VALUE
<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->
======== ==== === ================
00404058 1 2A 2A FF 43 5A 5A 20 FF FF **.CZZ ..

INITIALIZE Item-1 REPLACING NUMERIC BY 1
<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->
======== ==== === ================
00404058 1 FF 31 01 FF FF FF FF 31 31 .1.....11

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-73

6.2.23. INITIATE

Figure 6-65 - INITIATE Syntax

Although syntactically recognized by the GNU COBOL compiler, the INITIATE
statement is non-functional because the RWCS (COBOL Report Writer
Control System) is not currently supported by GNU COBOL.

INITIATE report-name-1 ...

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-74

6.2.24. INSPECT

Figure 6-66 - INSPECT Syntax

The INSPECT statement is used to
perform various counting or data-
alteration operations against strings.

1. Identifier-1 and literal-1 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data. Identifier-1
may be a group item. If function-1 is specified, it must be an invocation of an intrinsic function that returns a string
result. This is referred top as the inspect target.

2. A TALLYING clause will count the number of occurrences of a string of characters in the inspect target.

3. A REPLACING clause will convert occurrences of strings in the inspect target to different (equally-sized) strings (for
example, replacing all occurrences of “ABC” by “DEF”). The inspect target cannot be a literal or function result
when using REPLACING.

4. A CONVERTING clause will perform any number of single character replacements in the inspect target. The inspect
target cannot be a literal or function result when using CONVERTING.

5. If both TALLYING and REPLACING are specified on the same INSPECT statement, the effect will be as if two INSPECT
statements had been coded – the first performing the TALLYING and the second performing the REPLACING.

6.2.24.1. TALLYING Clause Syntax, Rules and Operation

The purpose of the TALLYING clause is to count how many occurrences of one or more strings appear within all or a
subset of the inspect target.

Each search string is specified using a single
tallying-item after the TALLYING keyword.
The syntax of a single tallying item is shown
to the right.

1. Identifier-2 must be an unedited
numeric item.

2. Identifier-3 and literal-2 must be
explicitly or implicitly defined as
alphanumeric USAGE DISPLAY data.
Identifier-3 may be a group item.

3. The inspect-region-clause(s) limit TALLYING processing to a specific subset of the inspect target. If no inspect-
region-clause is specified, the entire inspect target will be searched.

4. Identifier-2 may be specified in multiple tallying-items.

5. Identifier-2 will be incremented by 1 each time the target string being searched for is found within the specified
range of the inspect target. The target string will be:

a. Any single character if the CHARACTERS option is used; this form basically just counts total characters

b. ALL, all LEADING or all TRAILING occurrences of Identifier-3 or literal-2.

literal-1
INSPECT identifier-1

function-1

TALLYING tallying-item … REPLACING replacing-item …
TALLYING tallying-item …
REPLACING replacing-item …
CONVERTING converting-item …

identifier-2 FOR

ALL
LEADING
TRAILING
CHARACTERS [inspect-region-clause] …

[inspect-region-clause] …literal-2
identifier-3

TALLYING tallying-item … Format of a tallying-item

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-75

6. Once an occurrence of the target
string is found and TALLYed, the
INSPECT TALLYING process will
resume from the end of the
found occurrence. This prevents
the possibility of counting
overlapping occurrences.

The example shows an 8-
character item whose value is
“XXXXXXXX” used as the object of
an INSPECT TALLYING that is
looking for “XX” occurrences:

Figure 6-67 - An INSPECT TALLYING Example

Only four (4) “XX” occurrences were found. Character positions 2-3, 4-5 and 6-7 – even though they are “XX”
occurrences – weren’t counted because they overlapped other occurrences.

6.2.24.2. REPLACING Clause Syntax, Rules and Operation

The purpose of the
REPLACING clause is to
replace occurrences of
a substring within the
inspect target with a
different substring of
the same length. If you
need to replace one or
more substrings with
others of a different
length, consider using
the SUBSTITUTE or SUBSTITUTE-CASE intrinsic function.

Each search and replace string is specified using a single replacing-item after the REPLACING keyword. The syntax of a
single replacing item is shown above.

1. Identifier-4 and literal-3 (known as the target string) must be explicitly or implicitly defined as alphanumeric USAGE
DISPLAY data. Identifier-4 may be a group item.

2. Identifier-5 and literal-4 (known as the replacement string) must be explicitly or implicitly defined as alphanumeric
USAGE DISPLAY data. Identifier-5 may be a group item.

3. Identifier-4 / literal-3 must be the same length as identifier-5 / literal-4.

4. Target strings are identified as:

a. Any sequence of characters as long as the length of the replacement string if the CHARACTERS option is used

b. ALL, all LEADING, only the FIRST or all TRAILING occurrences of Identifier-4 or literal-3.

5. The inspect-region-clause(s) limit REPLACING processing of any one specific replacing-item to a specific region of
the inspect target. If no inspect-region-clause is specified, the entire inspect target will be processed. Different
replacing-items may have different regions specified.

6. REPLACING processing works as follows:

a. Processing begins with the first character of the inspect target an internal character pointer index to the first
character position.

b. If the internal character pointer is pointing past the end of the inspect target, REPLACING processing is
complete and the INSPECT statement will terminate.

01 Inspect-Target PIC X(8) VALUE “XXXXXXXX”.
01 Double-X-Counter PIC 9(2).

.

.

.
MOVE 0 TO Double-X-Counter
INSPECT Inspect-Target

TALLYING Double-X-Counter FOR ALL “XX“
DISPLAY

“Count=“ Double-X-Counter
END-DISPLAY

Count=04
Generated
Output

X X X X X X X X

1 2 3 4 5 6 7 8

Inspect-Item

literal-3
identifier-4

ALL
LEADING
FIRST
TRAILING

CHARACTERS

BY
literal-4
identifier-5

[inspect-region-clause] …

REPLACING replacing-item … Format of a replacing-item

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-76

c. Each replacing-item is checked, in the sequence in which they are coded on the INSPECT statement, looking for
one whose inspect-region-clauses allow its target-string to match the substring of the inspect target that
begins with the current character of that inspect target currently being pointed to.

d. If no replacing-items can match the inspect target from the current character position forward, the character
pointer is advanced by one and processing returns to rule #6.b.

e. If a match is found, that replacing-item’s replacement-string will replace the target-string in the inspect target
(starting at the current character position). If the replacing-item’s coding specified the FIRST option, that
replacing-item will be disabled for any further iterations during this execution of the INSPECT statement. The
current character pointer into the inspect target will be set to the first character following the replaced string
and processing returns to rule #6.b.

See Also…

The SUBSTITUTE Intrinsic Function 6.1.14.77

The SUBSTITUTE-CASE Intrinsic Function 6.1.14.78

6.2.24.3. CONVERTING Clause Syntax, Rules and Operation

The purpose of the CONVERTING clause is
to perform a series of monocharacter
substitutions against a data item.

Each search and replace character
sequence is specified using a single
converting-item after the CONVERTING
keyword. The syntax of a single converting
item is shown to the right.

1. Identifier-6, identifier-7, literal-5 and literal-6 must be explicitly or implicitly defined as alphanumeric USAGE
DISPLAY data. Identifier-6 and identifier-7, if used, may be group items.

2. Identifier-6 / literal-5 (the “from string”) should be the same length as identifier-7 / literal-6 (the “to string”). If they
aren’t:

a. If the length of the from string exceeds the length of the to string, then the to string will be assumed to be
padded to the right with spaces to make them the same length.

b. If the length of the to string exceeds the length of the from string, then the to string will be assumed to be
truncated to the length of the from string.

3. Each character within the inspect target that lies within the range limits defined by the inspect-region-clause(s), if
any, will be searched for within the from string. If found, that inspect target character will be replaced by the to
string character that corresponds (by relative position) to the character found in the from string.

6.2.24.4. INSPECT Region Clause, Rules and Operation

 The purpose of an inspect-region-clause is to restrict the operation of
a TALLYING, REPLACING or CONVERTING clause to a specific range of
characters within the inspect target.

If multiple inspect-region-clauses are specified, the effects of them as a
group will serve to define the range.

1. Identifier-8 and literal-7 must be explicitly or implicitly defined as
alphanumeric USAGE DISPLAY data. Identifier-8 may be a group item. They may be of any length.

TO [inspect-region-clause] …
literal-5
identifier-6

literal-6
identifier-7

CONVERTING converting-item Format of a converting-item

INITIAL
BEFORE
AFTER

literal-7
identifier-8

Format of an inspect-region-clause

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-77

The following example illustrates how a range clause works and how multiple range clauses can work together. It also
illustrates how COBOL syntax allows potentially complicated operations to be coded in an easy-to-understand manner.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DemoINSPECT.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Inspect-Target PIC X(100) VALUE
 'THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG ' &
 'AND WAS BITTEN ON THE TAIL. THE FOX YELPED!'.
 PROCEDURE DIVISION.
 P1. DISPLAY "Before: " Inspect-Target
 INSPECT Inspect-Target
 REPLACING ALL "THE" BY "HIS"
 AFTER INITIAL "BITTEN"
 BEFORE INITIAL "."
 DISPLAY "After: " Inspect-Target
 .

When executed, this code produces the following console output (the change made by the INSPECT is highlighted):

Before: THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG AND WAS BITTEN ON THE TAIL. THE FOX YELPED!
After: THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG AND WAS BITTEN ON HIS TAIL. THE FOX YELPED!

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-78

6.2.25. MERGE

Figure 6-68 - MERGE Syntax

 The MERGE statement merges two or more files that have each been pre-sorted on a set of specified identical keys.

1. The sort-file-1 named on the MERGE statement must be defined using a sort description (SD) in the FILE SECTION of
the DATA DIVISION. This file is referred to in the remainder of this discussion as the “merge work file”.

2. File-name-1, file-name-2 and file-name-3 (if specified) must reference ORGANIZATION LINE SEQUENTIAL or
ORGANIZATION RECORD BINARY SEQUENTIAL files. These files must be defined using a file description (FD) in the
FILE SECTION of the DATA DIVISION.

3. The identifier-1 … field(s) must be defined as field(s) within a record of sort-file-1.

4. The WITH DUPLICATES IN ORDER clause is supported for compatibility purposes with other versions of COBOL, but
is non-functional in GNU COBOL

While any COBOL implementation’s SORT or MERGE facilities guarantee that records with duplicate key values will
be in proper sequence with regard to other records with different key values, they generally make no promises as
to the resulting relative sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their SORT and MERGE facilities to retain
duplicate key-value records in their original input sequence, relative to one another.

GNU COBOL always behaves as if the WITH DUPLICATES IN ORDER clause is specified, even if it isn’t.

5. The record descriptions of file-name-1, file-name-2, file-name-3 (if any) and sort-file-1 are assumed to be identical
in layout and size. While the actual data names used for fields in these files’ records may differ, the structure of
records, PICTURE of fields, size of fields and USAGE of data should match field-by-field across all files.

A common programming technique when using the MERGE statement is to define the records of all files involved
on the MERGE as simple elementary items of the form “01 record-name PIC X(n).” where n is the record size. The
only file where records are actually described in detail would then be sort-file-1.

6. The following rules apply to the files named on the USING clause:

a. None of them may be OPEN at the time the MERGE is executed.

b. Each of those files is assumed to be already sorted according to the specifications set forth on the MERGE
statement’s KEY clause.

c. No two of those files may be referenced on a SAME RECORD AREA, SAME SORT AREA or SAME SORT-MERGE
AREA statement specified in the I-O-CONTROL paragraph.

7. As the MERGE begins execution, the first record in each of the USING files is read automatically.

8. As the MERGE statement executes, the current record from each of the USING files is examined and compared to
each other according to the rules set forth by the KEY clause. The record that should be “next” in sequence
(according to KEY) will be written to the merge work file and the USING file from which that record came will be
read so that its next record is available. As end-of-file conditions are reached on USING files, those files will be

MERGE sort-file-1

{ ON KEY identifier-1 … } …

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

USING file-name-1 file-name-2 …

GIVING file-name-3 …
OUTPUT PROCEDURE IS procedure-name-1 [THRU|THROUGH procedure-name-2]

ASCENDING
DESCENDING

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-79

excluded from further MERGE processing – processing continues with the remaining USING files until all USING files
have been completely processed.

9. Once the merge work file has been populated, the merged data will be written to file-name-3 if the GIVING clause
was specified, or will be processed by utilizing an OUTPUT PROCEDURE.

10. When GIVING is specified, none of the file-name-3 … files can be OPEN at the time the MERGE is executed.

11. When an OUTPUT PROCEDURE is used, the procedure(s) specified on the OUTPUT PROCEDURE clause will be
invoked as if by a procedural PERFORM statement with no VARYING or UNTIL options specified. Merged records
may be read from the merge work file – one at a time – within the OUTPUT PROCEDURE using the RETURN
statement.

12. A GO TO statement that transfers control out of the OUTPUT PROCEDURE will terminate the MERGE but allows the
program to continue executing from the point where the GO TO transferred control to. Once an OUTPUT
PROCEDURE has been aborted using a GO TO it cannot be resumed, and the contents of the merge work file are
lost. You may, however, re-execute the MERGE statement itself. USING A “GO TO” TO PREMATURELY TERMINATE
A MERGE, OR RE-STARTING A PREVIOUSLY-CANCELLED MERGE IS NOT CONSIDERED GOOD PROGRAMMING
STYLE AND SHOULD BE AVOIDED.

13. An OUTPUT PROCEDURE is terminated in the same way a procedural PERFORM would be. Usually, this action will
be taken once the RETURN statement indicates that all records in the merge work file have been processed, but
termination could occur at any time if required. Once the OUTPUT PROCEDURE terminates, the output phase –
and the MERGE statement itself - is complete.

14. Neither a Format-1 SORT nor another MERGE may be executed within the scope of the procedures comprising the
OUTPUT PROCEDURE unless those statements utilize a different sort or merge work file.

See Also…

The I-O-CONTROL Paragraph 4.2.2

Describing the Structure of a File (FD/SD) 5.1

Defining a Data Item’s PICTURE 5.2.1.6

Storage Format of Data (USAGE) 5.2.1.11

The GO TO Statement 6.2.20

The OPEN Statement 6.4.29

The PERFORM Statement (Procedural) 6.2.30.1

The RETURN Statement 6.2.35

The SORT Statement (File Sort) 6.4.40.1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-80

6.2.26. MOVE

6.2.26.1. MOVE Format 1 – Simple MOVE

Figure 6-69 - Simple MOVE Syntax

This statement moves a specific value to one or more receiving
data items.

1. The MOVE statement will replace the contents of one or more receiving data items (identifier-2 …) with a new value
– the one specified by literal-1 or identifier-1.

2. Only numeric data can be moved to a numeric identifier-2. A MOVE involving numeric data will perform any
necessary format conversions that might be necessary.

3. If identifier-1 is specified as the source for a MOVE, its contents will not be changed
31

.

6.2.26.2. MOVE Format 2 – MOVE CORRESPONDING

Figure 6-70 - MOVE CORRESPONDING Syntax

This statement moves similarly-named items from one
group item to another.

1. The word CORRESPONDING may be abbreviated as CORR.

2. Both identifier-1 and identifier-2 must be group items.

3. When corresponding matches are established, the effect of a MOVE CORRESPONDING on those matches will be as
if a series of individual MOVEs were done – one for each match.

See Also…

The CORRESPONDING Clause 6.1.12.2

31
 Here’s an instance where COBOL’s strong dependence on the English language can get the inexperienced

programmer into trouble – it probably would have been better for generations of beginning COBOL programmers if
this verb had been named “COPY” rather than MOVE, as the process of MOVEing data from one place to another
only affects the data items named after the “TO”.

MOVE TO identifier-2 …
literal-1
identifier-1

MOVE CORRESPONDING identifier-1 TO identifier-2 …

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-81

6.2.27. MULTIPLY

6.2.27.1. MULTIPLY Format 1 – MULTIPLY BY

Figure 6-71 - MULTIPLY BY Syntax

1. Identifier-1 and identifier-2
must be numeric unedited
data items, each identifier-3
must be a numeric (edited or
unedited) data item and
literal-1 and literal-2 must be
numeric literals.

2. The product of identifier-1 or literal-1 and each identifier-2, in turn, will be computed and moved to each of the
identifier-2 data items, replacing its old contents.

3. The value of identifier-1 is not altered.

4. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

5. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

6.2.27.2. MULTIPLY Format 2 – MULTIPLY GIVING

Figure 6-72 - MULTIPLY GIVING Syntax

1. Identifier-1 and identifier-2
must be numeric unedited
data items, identifier-3
should be a numeric or
numeric-edited data item
and literal-1 must be a
numeric literal.

2. The product of identifier-1 or literal-1 and identifier-2 or literal-2 will be computed and moved to each of the
identifier-2 data item, replacing the old contents.

3. The optional “rounding-option” clause available to each identifier-3 will control how non-integer results will be
saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-3 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

MULTIPLY BY { identifier-2 [rounding-option] } …

[size-error-clause]

[END-MULTIPLY]

literal-1
identifier-1

MULTIPLY BY

GIVING { identifier-3 [rounding-option] } …

[size-error-clause]

[END-MULTIPLY]

literal-1
identifier-1

literal-2
identifier-2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-82

6.2.28. NEXT SENTENCE

Figure 6-73 - NEXT SENTENCE Syntax

The NEXT SENTENCE statement is a means of “breaking out” of a series of nested
“IF” statements.

1. The NEXT SENTENCE statement is valid only when used within the scope of an “IF” statement.

2. As its name implies, this statement causes control to transfer to the next sentence in the program.

3. The NEXT SENTENCE statement is needed for COBOL programs that are coded according to pre-1985 standards.
Programs coded for 1985 (and beyond) standards don’t need it.

4. New GNU COBOL programs should be coded to use the END-IF scope terminator for IF statements, which
invalidates the use of NEXT SENTENCE in favor of the CONTINUE statement.

See Also…

Use of Periods (.) 6.1.5

The CONTINUE Statement 6.4.10

NEXT SENTENCE

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-83

6.2.29. OPEN

Figure 6-74 - OPEN Syntax

The OPEN statement makes
one or more files described
in your program available for
use.

1. Any file defined in a GNU COBOL program must be successfully OPENed before it or any of it’s record descriptions
may be referenced on a CLOSE, DELETE, READ, REWRITE, START, UNLOCK or WRITE statement. Additionally, a file
must be successfully OPENed for any of its record data names (or data elements subordinate to those records) to
be referenced on any statement other than a MERGE or SORT.

2. Any attempt to OPEN a file that is already OPEN will fail with a FILE STATUS of 41 (“File Already OPEN”). This is a
fatal error that will terminate the program.

3. Any OPEN failure (including “File Already OPEN”) may be trapped using DECLARATIVES or an error procedure
established using the CBL_ERROR_PROC built-in subroutine. When either of these trap routines exit, however, the
GNU COBOL runtime system will terminate the program. Ultimately, you cannot recover from an OPEN failure.

4. The INPUT, OUTPUT, I-O and EXTEND options inform GNU COBOL of the manner in which you wish to use the file,
as follows:

OPEN
Mode

Effect

INPUT You may only read the existing contents of the file - only the CLOSE, READ, START and UNLOCK
statements will be allowed.

OUTPUT You may only write new content (which will completely replace any previous file contents) to the file -
only the CLOSE, UNLOCK and WRITE statements will be allowed.

I-O You may perform any operation you wish against the file - all file I/O statements will be allowed.

EXTEND You may only write new content (which will be appended after any previously existing file content) to
the file - only the CLOSE, UNLOCK and WRITE statements will be allowed.

5. The SHARING clause informs GNU COBOL how you are willing to co-exist with any other GNU COBOL programs that
may attempt to OPEN the same file after your program does.

6. The WITH NO REWIND option on the OPEN statement is supported syntactically but is otherwise non-functional.
Note that the CLOSE statement (section 6.2.7) also has this option, which is supported by GNU COBOL.

Devices that would be capable of supporting a WITH NO REWIND clause (tape drives) are pretty rare in the
environments in which GNU COBOL is intended to operate, and only such a device will be responsive to the WITH
NO REWIND option.

7. The WITH LOCK option will be functional only if your GNU COBOL build can support it. GNU COBOL built for
MinGW or native Windows will not, because the Unix “fcntl() primitive doesn’t exist in those environments. GNU
COBOL built for Cygwin or Unix will.

8. The REVERSED option will be syntactically accepted, but a compilation specifying either the “-Wobsolete” or “-
Wall” options will yield a warning message that REVERSED is an obsolete feature.

OPEN { [sharing-options] file-name-1 [open-options] } …

INPUT
OUTPUT
I-O
EXTEND

sharing-options:

ALL OTHER
NO OTHER
READ ONLY

SHARING WITH

LOCK
WITH

REVERSED

NO REWIND

open-options:

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-84

See Also…

FILE-STATUS Values Figure
4-15

File Sharing 6.1.9.1

Record Locking 6.1.9.2

Using DECLARATIVES 6.1.4

The CLOSE Statement 6.4.7

The DELETE Statement 6.4.11

The MERGE Statement 6.4.25

The READ Statement 6.4.31

The REWRITE Statement 6.4.36

The SORT Statement (File Sort) 6.4.40.1

The START Statement 6.2.41

The UNLOCK Statement 6.4.48

The WRITE Statement 6.4.50

The CBL_ERROR_PROC Subroutine 8.3.1.24

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-85

6.2.30. PERFORM

6.2.30.1. PERFORM Format 1 – Procedural

Figure 6-75 - Procedural PERFORM Syntax

This format of the PERFORM statement is used to transfer control to one or more procedures and to return control
when execution of the specified procedure(s) is complete. This invocation of the procedure(s) can be done a single
time, multiple times, repeatedly until a condition becomes TRUE or forever (with – presumably – some way of breaking
out of the control of the PERFORM or of hal;ting program execution within the procedure(s)).

1. The words THROUGH and THRU may be used interchangeably. Both procedure-name-1 and procedure-name-2
must be PROCEDURE DIVISION sections or paragraphs defined in the same program as the PERFORM statement. If
procedure-name-2 is specified, it must follow procedure-name-1 in the program’s source code. The scope of the
PERFORM is defined as being the statements within procedure-name-1, the statements within procedure-name-2
and all statements in all procedures defined between them.

2. All identifier-n entries shown must be elementary unedited numeric data items. All literal-n entries shown must be
numeric literals (or references to functions that return a numeric value.

3. Without the UNTIL, TIMES, VARYING or FOREVER clauses, the code within the scope of the
PERFORM will be executed (once) and control will return to the statement following the
PERFORM. See Figure 6-76.

PERFORM procedure-name-1 [THRU|THROUGH] procedure-name-2]

[WITH TEST]

UNTIL EXIT|FOREVER

TIMES

BEFORE
AFTER

literal-1
identifier-1

varying-clause

UNTIL conditional-expression-1

VARYING identifier-2 FROM [BY] UNTIL conditional-expression-2

[AFTER identifier-5 FROM [BY] UNTIL conditional-expression-3] …

literal-2
identifier-3

literal-3
identifier-4

literal-4
identifier-6

literal-5
identifier-7

varying clause:

Statements
within PERFORM

scope

PERFORM
Starts

PERFORM Ends

Figure 6-76 - Simple
PERFORM

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-86

4. The UNTIL EXIT option will repeatedly execute the code within the scope of
the PERFORM with no conditions defined on the PERFORM statement itself
for termination of the repetition. It will be up to the programmer to include
an EXIT PERFORM within the scope of the PERFORM that will break out of the
loop.

5. The FOREVER option has the same effect as UNTIL EXIT.

6. The TIMES option will repeat the execution of the code within the scope of the PERFORM a
fixed number of times. When the PERFORM statement is executed, the repeat count will
be set to the value of literal-1 or the value within identifier-1 at the time the PERFORM
begins execution. Once that number of repetitions has concluded, control will fall into
the next statement following the PERFORM

32
.

32 Changing the contents of identifier-1 within the scope of the PERFORM will have no effect on the repetition count, as that was determined the

moment the PERFORM began executing.

Figure 6-77 -
PERFORM UNTIL EXIT

Figure 6-78 –
PERFORM n TIMES

Statements
within PERFORM

scope

PERFORM
Starts

PERFORM Ends

EXIT
PERFORM

Statements
within PERFORM

scope

PERFORM
Starts

PERFORM Ends

Repeat count set
to literal-1 or

identifier-1 value

Repeat count
decremented by

1

Repeat
count = 0?

Yes

No

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-87

7. The “UNTIL conditional-expression-1” option will
repeat the code within the scope of the PERFORM until
the specified conditional expression evaluates to a TRUE
value.

8. The optional WITH TEST clause will control whether
UNTIL testing occurs BEFORE the scope of the PERFORM
is executed on each iteration or AFTER. The default, if
no WITH TEST clause is specified, is BEFORE.

9. The VARYING clause allows for the
definition of a data item (identifier-2)
that will have a unique numeric value
for each iteration of the execution of
the statements within the scope of
the PERFORM.

10. If a VARYING clause has been used,
you may also use any number of
additional AFTER clauses to create a
secondary loop situation where each
AFTER will create an additional series
of iterations, will define an additional
data item to be incremented during
each iteration and will define an
additional conditional expression to
define the termination of that series
of iterations. Functionally, this is
basically a way of nesting a
PERFORM VARYING within another
PERFORM VARYING without the
need to code multiple statements.

11. The flowchart in Figure 6-80 shows
how PERFORM VARYING (with an
AFTER clause too!) works in both
TEST BEFORE and TEST AFTER
modes.

Figure 6-79 - PERFORM UNTIL

Statements
within PERFORM

scope

PERFORM
Starts

PERFORM Ends

conditional-
expression-

1

TRUE

FALSE

Statements
within PERFORM

scope

PERFORM
Starts

conditional-
expression-

1

TRUE

FALSE

WITH TEST BEFORE WITH TEST AFTER

Figure 6-80 - PERFORM VARYING AFTER

PERFORM
Starts

PERFORM Ends

conditional-
expression-

2

TRUE

FALSE

TRUE

WITH TEST BEFORE WITH TEST AFTER

Initialize identifier-2
to its current FROM

value

conditional-
expression-

3

FALSE

Statements
within PERFORM

scope

Increment
identifier-5 by its

BY value

TRUE

PERFORM
Starts

Statements
within PERFORM

scope

conditional-
expression-

3

Increment
identifier-5 by its

BY value

FALSE

conditional-
expression-

2

Increment
identifier-2

by its BY
value

TRUE

FALSE

Initialize identifier-5
to its current FROM

values

Initialize identifier-2
to its current FROM

value

Initialize identifier-5
to its current FROM

values

Increment
identifier-2

by its BY
value

VARYING

AFTER

Color
Legend

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-88

Observe the following code which defines a two-
dimensional (3 row by 4 column) table and a pair of
numeric data items to be used to subscript references to
each element of the table:

01 PERFORM-DEMO.
 05 PD-ROW OCCURS 3 TIMES.
 10 PD-COL OCCURS 4 TIMES
 15 PD PIC X(1).
01 PD-Col-No PIC 9 COMP.
01 PD-Row-No PIC 9 COMP.

Let’s say we want to PERFORM a routine (100-Visit-Each-PD) which will – in turn – access
each PD data item in the sequence shown to the right. Here’s the PERFORM code:

 PERFORM 100-Visit-Each-PD WITH TEST AFTER
 VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3
 AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4.

But, perhaps you needed to “visit” each PD in the sequence
shown to the left. If so, then here’s the PERFORM you need:

 PERFORM 100-Visit-Each-PD WITH TEST AFTER
 VARYING PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4
 VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3.

As a general rule of thumb, if you use WITH TEST AFTER on a PERFORM, the termination conditions specified on
VARYING and AFTER clauses should test the identifier being varied for being EQUAL TO the maximum value it should
receive. If you use WITH TEST BEFORE, the termination conditions specified on VARYING and AFTER clauses should test
the identifier being varied for being GREATER THAN the maximum value it should receive.

Thus, the two PERFORM examples shown above could have been coded this way:

 PERFORM 100-Visit-Each-PD WITH TEST BEFORE
 VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No > 3
 AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No > 4.

- and –

 PERFORM 100-Visit-Each-PD WITH TEST BEFORE
 VARYING PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No > 4
 VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No > 3.

See Also…

Conditional Expressions 6.1.8.2

6.2.30.2. PERFORM Format 2 – Inline

PD (1, 1) PD (1, 2) PD (1, 3) PD (1, 4)

PD (2, 1) PD (2, 2) PD (2, 3) PD (2, 4)

PD (3, 1) PD (3, 2) PD (3, 3) PD (3, 4)

1 2 3 4

5 6 7 8

9 10 11 12

1 4 7 10

2 5 8 11

3 6 9 12

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-89

Figure 6-81 - Inline PERFORM Syntax

This format of the PERFORM statement is identical in operation to format 1, except for the fact that the statements that
comprise the scope of the PERFORM are now specified in-line with the PERFORM code rather than in procedures
located elsewhere within the program.

1. The various optional clauses have the same use and effect as in format 1 of the PERFORM statement.

2. The distinguishing characteristic of this format versus format 1 is that – with this version of the PERFORM
statement – the code being executed is specified in-line (imperative-statement-1 …) rather than in one or more
separate procedures.

‘

PERFORM

[WITH TEST]

UNTIL EXIT|FOREVER

TIMES

[imperative-statement-1] …

[END-PERFORM]

BEFORE
AFTER

literal-1
identifier-1

varying-clause

UNTIL conditional-expression-1

VARYING identifier-2 FROM [BY] UNTIL conditional-expression-2

[AFTER identifier-5 FROM [BY] UNTIL conditional-expression-3] …

literal-2
identifier-3

literal-3
identifier-4

literal-4
identifier-6

literal-5
identifier-7

varying clause:

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-90

6.2.31. READ

6.2.31.1. READ Format 1 – Sequential READ

Figure 6-82 – READ (Sequential) Syntax

This form of the READ statement retrieves the next (or
previous) record from a file.

1. File-name-1 must currently be OPEN for INPUT or I-O.

2. If the ACCESS MODE of file-name-1 is RANDOM, this format of the READ statement cannot be used.

3. If the ACCESS MODE is SEQUENTIAL, this is the only format of READ that is available.

4. If the ACCESS MODE is DYNAMIC, this format of the READ statement may be used as well as format 2. The
following minimalist READ statement…

READ file-name-1

…is perfectly legal according to both READ formats. For that reason, when ACCESS MODE DYNAMIC has been
specified and you want to tell the GNU COBOL compiler that a statement such as the one above should be treated
as a sequential READ, you must add either NEXT or PRIOR to the statement (otherwise it will be treated as a
random READ).

5. The keywords NEXT and PREVIOUS specify in what direction of travel the reading process will take through the file.
If neither NEXT nor PREVIOUS clause is specified, NEXT is assumed.

6. The PREVIOUS option is available only for ORGANIZATION INDEXED files.

7. A successful sequential READ will retrieve the next available record from file-name-1, in either a “next” or
“previous” direction from the most-recently-READ record, depending upon the use of the NEXT or PREVIOUS
option. The newly-retrieved record data will be saved into the 01-level record structure(s) that immediately follow
the file’s FD or SD. If the optional INTO clause is present, a copy of the just-retrieved record will be automatically
MOVEd to identifier-1.

8. The optional LOCK options may be used to control access to the file by other programs while this program is
running.

9. The optional at-end-clause may be used to detect situations where all records in a file have been processed (known
as an end-of-file condition). Without using one of these clauses, a program would need to test the returned FILE
STATUS value after each READ.

See Also…

Types of Files 1.3.3.5

Defining File Characteristics (SELECT) 4.2.1

FILE-STATUS Values Figure
4-15

Describing the Structure of a File (FD/SD) 5.1

Record Locking 6.1.11.2

Handling End-of-File Conditions (AT END) 6.1.12.1

The OPEN Statement 6.4.29

READ file-name-1 [] RECORD

[INTO identifier-1]

[at-end-clause]

[END-READ]

NEXT
PREVIOUS

IGNORING LOCK
WITH LOCK
WITH KEPT LOCK
WITH NO LOCK
WITH IGNORE LOCK
WITH WAIT

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-91

6.2.31.2. READ Format 2 – Random Read

Figure 6-83 - READ (Random) Syntax

This form of the READ statement retrieves an arbitrary record from a
ORGANIZATION RELATIVE or ORGANIZATION INDEXED file.

1. File-name-1 must currently be OPEN for INPUT or I-O.

2. If the ACCESS MODE of file-name-1 is SEQUENTIAL, this format of the READ statement cannot be used.

3. If the ACCESS MODE is RANDOM, this is the only format of READ that is available.

4. If the ACCESS MODE is DYNAMIC, this format of the READ statement may be used as well as format 1. The
following minimalist READ statement…

READ file-name-1

…is perfectly legal according to both READ formats. For that reason, when ACCESS MODE DYNAMIC has been
specified for a file, a READ statement such as the above will be automatically treated as a random READ.

5. The optional KEY clause tells the compiler how a record is to be located in the file.

If the KEY clause is absent:

If the file is an ORGANIZATION RELATIVE file, the contents of the field declared as the file’s RELATIVE KEY will
be used to identify a record. If the file is an ORGANIZATION INDEXED file, the contents of the field declared as
the file’s RECORD KEY (section will be used to identify a record.

If the KEY clause is specified:

If the file is an ORGANIZATION RELATIVE file, the contents of identifier-2 will be used as the relative record
number of the record to be accessed. Identifier-2 does not have to be the RELATIVE KEY field of the file
(although it could be if you wish). If the file is an ORGANIZATION INDEXED file, identifier-2 must be the
PRIMARY RECORD KEY or one of the file’s ALTERNATE RECORD KEY fields (if any) – the current contents of
that field will identify the record to be accessed. If an alternate record key is used, and that key allows
duplicate values, the record accessed will be the 1

st
 one having that key value.

6. The record identified by rule #5 will be retrieved from file-name-1. The newly-retrieved record data will be saved
into the 01-level record structure(s) that immediately follow the file’s FD. If the optional INTO clause is present, a
copy of the just-retrieved record will be automatically MOVEd to identifier-1..

7. The optional LOCK options may be used to control access to the file by other programs while this program is
running.

READ file-name-1 RECORD

[INTO identifier-1]

[KEY IS identifier-2]

[invalid-key-clause]

[END-READ]

IGNORING LOCK
WITH LOCK
WITH KEPT LOCK
WITH NO LOCK
WITH IGNORE LOCK
WITH WAIT

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-92

8. The optional invalid-key-clause may be used to detect situations where the desired record cannot be read from the
file (most likely because no record exists with the specified RELATIVE KEY or RECORD KEY). Without using one of
these clauses, a program would need to test the returned FILE STATUS value after each READ.

See Also…

Types of Files 1.3.3.5

Defining File Characteristics (SELECT) 4.2.1

FILE-STATUS Values Figure
4-15

Describing the Structure of a File (FD/SD) 5.1

Handling Invalid Keys (INVALID KEY) 6.1.12.3

The OPEN Statement 6.4.29

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-93

6.2.32. READY TRACE

Figure 6-84 - READY TRACE Syntax

The READY TRACE verb turns procedure or procedure+statement tracing on.

1. This statement will cause procedure or procedure+statement tracing to be turned on.

2. In order for this statement to be functional, tracing code must have been generated into the compiled program
using either the “-ftrace” (procedures only) or “-ftraceall” (procedures + statements) compiler options.

3. Tracing may be turned off at any point by executing the RESET TRACE statement (section).

4. See the COB_SET_TRACE environment variable for another way to control tracing.

See Also…

The RESET TRACE Statement 6.4.34

Compiler Switches Reference 8.1.2

Execution-time Environment Variables 8.2.4

READY TRACE

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-94

6.2.33. RELEASE

Figure 6-85 - RELEASE Syntax

The RELEASE statement adds a new record to a sort work
file.

1. The RELEASE statement is valid only within the INPUT PROCEDURE of a SORT statement.

2. Record-name-1 must be a record defined to a sort description (SD) entry.

See Also…

Describing the Structure of a File (FD/SD) 5.1

The SORT Statement (File Sort) 6.4.40.1

RELEASE record-name-1 [FROM]
literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-95

6.2.34. RESET TRACE

Figure 6-86 - RESET TRACE Syntax

The RESET TRACE verb turns procedure or procedure+statement tracing off.

1. This statement will cause procedure or procedure+statement tracing to be turned off.

2. By default, procedure and procedure+statement tracing is OFF as programs begin execution. Use the READY TRACE
statement (section to turn tracing on.

3. In order for this statement to be functional, tracing code must have been generated into the compiled program
using either the “-ftrace” (procedures only) or “-ftraceall” (procedures + statements) compiler options.

4. See the COB_SET_TRACE environment variable for another way to control tracing.

See Also…

The READY TRACE Statement 6.2.32

Compiler Switches Reference 8.1.2

Execution-time Environment Variables 8.2.4

RESET TRACE

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-96

6.2.35. RETURN

Figure 6-87 - RETURN Syntax

The RETURN statement reads a record from a sort- or merge work
file.

1. The RETURN statement is valid only within the OUTPUT PROCEDURE of a SORT or MERGE statement.

2. Sort-file-name-1 must be a sort- or merge work file defined with a sort description (SD) entry.

3. A successful RETURN will retrieve the next available record from sort-file-name-1. The newly-retrieved record data
will be saved into the 01-level record structure(s) that immediately follow the file’s SD. If the optional INTO clause
is present, a copy of the just-retrieved record will be automatically MOVEd to identifier-1.

4. The optional at-end-clause may be used to detect situations where all sorted records have been RETURNed (known
as an end-of-file condition). Without using one of these clauses, a program would need to test the returned FILE
STATUS value after each RETURN.

See Also…

Describing the Structure of a File (FD/SD) 5.1

Handling End-of-File Conditions (AT END) 6.1.12.1

The MERGE Statement 6.4.25

The MOVE Statement 6.2.26

The SORT Statement (File Sort) 6.4.40.1

RETURN sort-file-name-1 RECORD

[INTO identifier-1]

[at-end-clause]

[END-RETURN]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-97

6.2.36. REWRITE

Figure 6-88 - REWRITE Syntax

The REWRITE statement replaces a logical record on a disk file.

1. Record-name-1 must be defined as an 01-level record subordinate to the File Description of a file that is currently
OPEN for I-O.

2. The optional FROM clause will cause literal-1 or identifier-1 to be implicitly MOVEd into record-name-1 prior to
writing record-name-1 to the file.

3. The REWRITE statement may not be used with ORGANIZATION IS LINE SEQUENTIAL files.

4. If the optional LOCK clause is omoitted, the effect will be as is WITH NO LOCK was coded – that is, the rewritten
record will not be locked against access by other programs.

5. Rewriting a record does not cause the record contents of the file to be physically updated until the next block of the
file is read, a COMMIT or UNLOCK statement is issued or that file is CLOSEd.

6. If the file has ORGANIZATION RECORD BINARY SEQUENTIAL:

a. The record to be rewritten will be the one retrieved by the most-recently executed READ of the file.

b. If the FD of the file contains the RECORD CONTAINS / RECORD IS VARYING clause and it allows record size to
vary, the size of record-name-1 cannot be altered.

7. If the file has ORGANIZATION RELATIVE or ORGANIZATION INDEXED:

a. If the file has ACCESS MODE SEQUENTIAL, the record to be rewritten will be the one retrieved by the most-
recently executed READ of the file. If the file has ACCESS MODE RANDOM or ACCESS MODE DYNAMIC, no
READ is required before a record may be rewritten – the RELATIVE KEY / RECORD KEY definition for the file will
specify the record to be updated.

b. The size of record-name-1 may be updated.

8. The optional invalid-key-clause allows the program to detect and recover from attempts to rewrite non-existent
records.

See Also…

Types of Files 1.3.3.5

Describing the Structure of a File (FD/SD) 5.1

Record Locking 6.1.9.2

Handling Invalid Keys (INVALID KEY) 6.1.12.3

The CLOSE Statement 6.4.7

The COMMIT Statement 6.4.8

The MOVE Statement 6.2.26

The OPEN Statement 6.4.29

The READ Statement 6.4.31

The UNLOCK Statement 6.4.48

REWRITE record-name-1

[FROM]

WITH LOCK
WITH NO LOCK

[invalid-key-clause]

[END-REWRITE]

literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-98

6.2.37. ROLLBACK

Figure 6-89 - ROLLBACK Syntax

The ROLLBACK verb reverts changes made to all files since the start of the program
or since the last COMMIT.

1. GNU COBOL does not (currently, at least) support file rollback. The GNU COBOL ROLLBACK statement will have the
same effect as the COMMIT verb.

See Also…

The COMMIT Statement 6.4.8

ROLLBACK

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-99

6.2.38. SEARCH

6.2.38.1. SEARCH Format 1 – Sequential Search

Figure 6-90 - Sequential SEARCH Syntax

The SEARCH statement is used to
sequentially search a table, stopping
either once a specific value is located
within the table or when the table has
been completely searched.

1. The index-name-1 identifier specified on the VARYING clause must be USAGE INDEX.

2. If no VARYING clause is specified, then the table being searched must have been created with an INDEXED BY
clause.

3. At the time the SEARCH statement is executed, the current value of index-name-1 (or the table’s defined INDEXED
BY index if no VARYING clause is specified) will define the starting position in the table where the searching process
will begin. Typically, one initializes that index to a value of 1 before starting the SEARCH, as follows:

SET index-name-1 TO 1

4. During the searching process, the conditional-expression-1 will be evaluated and – if TRUE – will cause imperative-
statement-2 to be executed, after which control will fall into the next statement after the SEARCH.

5. If multiple WHEN clauses exist, each conditional-expression-n will be evaluated in-turn and the first one that
evaluates to TRUE will cause the corresponding imperative-statement-n to be executed, after which control will fall
into the next statement after the SEARCH.

6. If no conditional-expression-n evaluates to TRUE, the value of index-name-1 will be incremented to p[oint to the
next entry in the table. If the value of index-name-1 is still within the OCCURS scope of table-name-1, the WHEN
clause(s) will again be re-evaluated. This process will continue until a WHEN clause conditional-expression-n
evaluates to TRUE or until the value of index-name-1 is no longer within the OCCURS scope of table-name-1.

7. If no conditional-expression-n ever evaluates to TRUE and the value of index-name-1 is no longer within the
OCCURS scope of table-name, the imperative-statement-1 which is part of the AT END clause will be executed.
After this, control will fall into the next statement following the SEARCH. If there is no AT END clause, control
simply falls into the next statement following the SEARCH.

See Also…

Defining Tables (OCCURS) 0

Storage Format of Data (USAGE) 5.2.1.11

The SET index Statement 6.2.39.4

SEARCH table-name-1

[VARYING index-name-1]

[AT END imperative-statement-1]

{ WHEN conditional-expression-1 imperative-statement-2 } …

[END-SEARCH]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-100

6.2.38.2. SEARCH Format 2 – Binary, or Half-interval Search (SEARCH ALL)

Figure 6-91 - Binary SEARCH (ALL) Syntax

This format of the SEARCH statement
performs a binary, or half-interval, search
against a sorted table.

1. The definition of table-name-1 must include the OCCURS, ASCENDING (and/or DESCENDING) KEY and INDEXED BY
clauses.

2. In order for a table to be searchable via the SEARCH ALL statement, each of the following must be true:

a. The table meets the requirements of rule #1 above.

b. Just because the table has one or more KEY clauses doesn’t mean the data is actually in that sequence in the
table – the actual sequence of the data must agree with the KEY clause(s)!

33

c. No two records in the table may have the same KEY field values. If the table has multiple KEY definitions, then
no two records in the table may have the same combination of KEY field values.

If rule “a” is violated, the compiler will reject the SEARCH ALL. If rules “b” and/or “c” are violated, there will be no
message issued by the compiler, but the run-time results of a SEARCH ALL against the table will probably be
incorrect.

3. The conditional-expression-1 should involve the KEY fields, using the table’s INDEXED BY index name as a subscript.

4. The WHEN clause is mandatory, unlike format 1 of the SEARCH statement.

5. There can only be one WHEN clause specified.

6. The function of the WHEN is to compare the key field(s) of the table, as indexed by the table’s INDEXED BY index
data item, against whatever literal and/or identifier values you are searching for in order to locate the desired entry
in the table. The table’s index will be automatically varied by the SEARCH ALL statement in a manner designed to
require the minimum number of tests.

7. The internal processing of the SEARCH ALL statement begins by setting internal “first” and “last” pointers to the 1
st

and last entry locations of the table. Processing then proceeds as follows

34
:

a. The entry half-way between “first” and “last” is identified. We’ll call this the “current” entry, and will set its
table entry location into index-name-1.

b. The WHEN is evaluated. This comparison of the key(s) against the target literal/identifier values will have one
of three possible outcomes:

i. If the key(s) and value(s) match, imperative-statement-2 is executed, after which control falls thru into the
next statement following the SEARCH ALL.

ii. If the key(s) are LESS THAN the value(s), then the table entry being searched for can only occur in the
“current” to “last” range of the table, so a new “first” pointer value is set (it will be set to the “current”
pointer).

iii. If the key(s) are GREATER THAN the value(s), then the table entry being searched for can only occur in the
“first” to “current” range of the table, so a new “last” pointer value is set (it will be set to the “current”
pointer).

33
 Of course, if the data sequence doesn’t agree with the KEY clause, you can easily make it that way using a table SORT

34
 This is a simplified view of the algorithm intended purely as a pedagogical tool – an actual implementation of it requires a few

additional picky little details to make it work (such as what to do when rule “a” identifies a “current” entry of 12.5!)

SEARCH ALL table-name-1

[AT END imperative-statement-1]

WHEN conditional-expression-1 imperative-statement-2

[END-SEARCH]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-101

c. If the new “first” and “last” pointers are different than the old “first” and “last” pointers, there’s more left to
be searched, so return to step “a” and continue.

d. If the new “first” and “last” pointers are the same as the old “first” and “last” pointers, the table has been
exhausted and the entry being searched for cannot be found; imperative-statement-1 is executed, after which
control falls thru into the next statement following the SEARCH ALL. If there is no AT END clause coded,
control simply falls into the next statement following the SEARCH ALL.

The net effect of the above algorithm is that only a fraction of the number of elements in the table need ever be
tested in order to decide whether or not a particular entry exists. This is because the SEARCH ALL discards half the
remaining entries in the table each time it checks an entry.

Computer scientists will compare these two search techniques as follows:

 A sequential search (format 1) will need an average of n/2 tests and a worst case of n tests in order to find an
entry and n tests to identify that an entry doesn’t exist (n = the number of entries in the table).

 A binary search (format 2) will need worst case of log2n tests in order to find an entry and log2n tests to identify
that an entry doesn’t exist (n = the number of entries in the table).

Here’s a more practical view of the difference. Let’s say that a table has 1,000 entries in it. With a sequential
(format 1) search, on average, you’ll have to check 500 of them to find an entry and you’ll have to look at all 1,000
of them to find that an entry doesn’t exist. With a binary search, express the number of entries as a binary number
(1,00010 = 11111010002) and count the number of digits in the result (10) -THAT is the worst-case number of tests
required to find an entry or to identify that it doesn’t exist. That’s quite an improvement!

See Also…

Defining Tables (OCCURS) 0

Storage Format of Data (USAGE) 5.2.1.11

The SORT Statement (Table Sort) 6.4.40.2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-102

6.2.39. SET

6.2.39.1. SET Format 1 – SET ENVIRONMENT

Figure 6-92 - SET ENVIRONMENT Syntax

A SET ENVIRONMENT statement provides a straight-
forward means of setting environment values from
within a program.

1. Environment variables created or changed from within GNU COBOL programs will be available to any sub-shell
processes spawned by that program (i.e. CALL “SYSTEM”) but will not be known to the shell or console window that
started the GNU COBOL program.

2. This is a much simpler and more readable means of setting environment variables than by using the DISPLAY
statement. For example, these two code sequences produce identical results:

DISPLAY
 “VARNAME” UPON ENVIRONMENT-NAME
END-DISPLAY
DISPLAY
 “VALUE” UPON ENVIRONMENT-VALUE
END-DISPLAY

SET ENVIRONMENT “VARNAME” TO “VALUE”

See Also…

The DISPLAY Statement (Environment) 6.2.12.3

6.2.39.2. SET Format 2 – SET Program-Pointer

Figure 6-93 - SET Program Pointer Syntax

This form of SET allows you to retrieve the address of a
PROCEDURE DIVISION code module – specifically a
declared entry-point into the PROCEDURE DIVISION.

1. If you have used other versions of COBOL before (particularly mainframe implementations), you’ve possibly seen
subroutine CALLs made passing a PROCEDURE DIVISION paragraph or SECTION name as an argument – that is not
possible in GNU COBOL; instead, you need to know how to use this form of the SET statement.

2. The USAGE of program-pointer-1 must be PROGRAM-POINTER.

3. The literal-1 or identifier-1 value specified must name a primary entry-point name (PROGRAM-ID of a subroutine or
FUNCTION-ID of a user-defined function) or an alternate entry-point defined via an ENTRY statement within a
subprogram.

4. Once the address of a PROCEDURE DIVISION code area has been acquired in this way, the address could be passed
to a subroutine (usually written in C) for whatever use it needs it for. For examples of PROGRAM-POINTERS at work,
see the discussions of the CBL_ERROR_PROC and CBL_EXIT_PROC built-in subroutines.

See Also…

Storage Format of Data (USAGE) 5.2.1.11

The ENTRY Statement 6.2.14

The CBL_ERROR_PROC Subroutine 8.3.1.24

The CBL_EXIT_PROC Subroutine 8.3.1.25

6.2.39.3. SET Format 3 – SET ADDRESS

SET ENVIRONMENT TOliteral-1
identifier-1

literal-2
identifier-2

SET program-pointer-1 TO ENTRY
literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-103

Figure 6-94 - SET ADDRESS Syntax

This form of the SET statement can be used to work with
the addresses of data items rather than their contents.

1. When the ADDRESS OF clause is used before the TO you will be using the SET to alter the address of a LINKAGE
SECTION or BASED data item. Without that clause you will be assigning an address to one or more USAGE POINTER
data items.

2. When the ADDRESS OF clause is used after the TO, SET will be identifying the address of identifier-2 as the address
to be assigned to identifier-1 or stored in pointer-name-1. If the “ADDRESS OF” clause is absent after the TO, the
contents of pointer-name-2 will serve as the address to be assigned.

See Also…

The DATA DIVISION 5

Dynamically Allocated Items (BASED) 5.2.1.2

Storage Format of Data (USAGE) 5.2.1.11

6.2.39.4. SET Format 4 – SET Index

Figure 6-95 - SET Index Syntax

This SET statement assigns a value to a USAGE INDEX data item.

1. The USAGE of index-name-1 should be INDEX, or index-name-1 must be identified in a table INDEXED BY clause.

See Also…

Defining Tables (OCCURS) 0

Storage Format of Data (USAGE) 5.2.1.11

6.2.39.5. SET Format 5 – SET UP/DOWN

Figure 6-96 - SET UP/DOWN Syntax

This format of SET is used to increment or decrement the
value of an index or pointer by a specified amount.

1. The USAGE of identifier-1 must be INDEX, POINTER or PROGRAM-POINTER.

2. The typical usage when identifier-1 is a USAGE INDEX data item is to increment it’s value UP or DOWN by 1, since
an INDEX is usually being used to sequentially walk through the elements of a table.

See Also…

Defining Tables (OCCURS) 0

Storage Format of Data (USAGE) 5.2.1.11

SET [ADDRESS OF] …

TO [ADDRESS OF]

pointer-name-1
identifier-1

pointer-name-2
identifier-2

SET index-name-1 TO
literal-1
identifier-1

SET identifier-1

BY [LENGTH OF]

UP
DOWN

literal-1
identifier-2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-104

6.2.39.6. SET Format 6 – SET Condition Name

Figure 6-97 - SET Condition Name Syntax

This format provides one method of specifying the TRUE /
FALSE value of a level-88 condition name.

1. By setting the specified condition name(s) to a TRUE or FALSE value, you will actually be assigning a value to the
parent data item(s) to which the condition name data item(s) is subordinate to.

2. When specifying TRUE, the value assigned to each parent data item will be the first VALUE specified on the
condition name’s definition.

3. When specifying FALSE on the SET, the value assigned to each parent data item will be the value specified for the
FALSE clause of the condition name’s definition; if any condition-name-1 occurrence lacks a FALSE clause, the SET
statement will be rejected by the compiler.

See Also…

Defining Level-88 Condition Names 5.2.7

6.2.39.7. SET Format 7 – SET Switch

Figure 6-98 - SET Switch Syntax

Use this SET statement type to turn a switch ON or OFF.

1. Switches are defined using the SPECIAL-NAMES paragraph.

2. Switches may be tested via the IF statement and a switch-status condition.

See Also…

The SPECIAL-NAMES Paragraph 4.1.4

Switch-Status Conditions 6.1.4.2.4

The IF Statement 6.2.21

6.2.39.8. SET Format 8 – SET ATTRIBUTE

Figure 6-99 - SET ATTRIBUTE Syntax

The SET ATTRIBUTE statement may be used to
modify one or more attributes of a SCREEN
SECTION data item at run-time.

1. When making an attribute change to identifier-1, the change will not become visible on the screen until the SCREEN
SECTION data item containing identifier-1 is next ACCEPTed (if identifier-1 is an input field) or is next DISPLAYed (if
identifier-1 is not an input field).

See Also…

Defining Screens 5.2.2

The ACCEPT Statement (Screen Data) 6.4.1.4

The DISPLAY Statement (Screen Data) 6.4.12.4

SET { condition-name-1 } … TO
TRUE
FALSE

SET { mnemonic-name-1 } … TO
ON
OFF

BELL
BLINK
HIGHLIGHT
LEFTLINE
LOWLIGHT
OVERLINE
REVERSE-VIDEO
UNDERLINE

SET identifier-1 ATTRIBUTE
ON
OFF

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-105

6.2.40. SORT

6.2.40.1. SORT Format 1 – File-based Sort

Figure 6-100 - File-Based SORT Syntax

This format
of the SORT
statement
is designed
to sort large
volumes of
data
according
to one or
more key
fields.

1. The sort-file-1 named on the SORT statement must be defined using a sort description (SD) in the FILE SECTION of
the DATA DIVISION. This file is referred to as the “sort work file”.

2. If specified, file-name-1 and file-name-2 must reference ORGANIZATION LINE SEQUENTIAL or ORGANIZATION
RECORD BINARY SEQUENTIAL files. These files must be defined using a file description (FD) in the FILE SECTION of
the DATA DIVISION. The same file(s) may be used for file-name-1 and file-name-2.

3. The identifier-1 … field(s) must be defined as field(s) within a record of sort-file.

4. The WITH DUPLICATES IN ORDER clause is supported for compatibility purposes with other versions of COBOL, but
is non-functional in GNU COBOL

While any COBOL implementation’s SORT or MERGE facilities guarantee that records with duplicate key values will
be in proper sequence with regard to other records with different key values, they generally make no promises as
to the resulting relative sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their SORT and MERGE facilities to retain
duplicate key-value records in their original input sequence, relative to one another.

GNU COBOL always behaves as if the WITH DUPLICATES IN ORDER clause is specified, even if it isn’t.

5. A sort work file (see #1) is never OPENed or CLOSEd.

6. The SORT statement works in three stages, as follows:

STAGE I (the input phase):

a. The data to be sorted is loaded into the sort file. This is accomplished either by taking the entire contents of
the file(s) named on the USING clause or by utilizing an INPUT PROCEDURE defined as procedure-name 1 or
procedure-name-1 THRU procedure-name-2.

b. When USING is specified, file-name-1 … must not be OPEN at the time the SORT is executed.

c. When an INPUT PROCEDURE is used, the procedure(s) specified on the INPUT PROCEDURE clause will be
invoked as if by a procedural PERFORM statement with no VARYING or UNTIL options specified. Records will
be loaded into the sort work file – one at a time – within the INPUT PROCEDURE using the RELEASE statement.

SORT sort-file-1

{ ON KEY identifier-1 … } …

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

USING file-name-1 …
INPUT PROCEDURE IS procedure-name-1 [THRU|THROUGH procedure-name-2]

GIVING file-name-2 …
OUTPUT PROCEDURE IS procedure-name-3 [THRU|THROUGH procedure-name-4]

ASCENDING
DESCENDING

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-106

As data is loaded into the sort file, it is actually being buffered in dynamically-allocated memory. Only if the
amount of data to be sorted exceeds the amount of available sort memory (128 MB)

35
 will actual disk files be

allocated and utilized. These “sort work files” will be discussed again shortly.

A GO TO statement that transfers control out of the INPUT PROCEDURE will terminate the SORT but allows the
program to continue executing from the point where the GO TO transferred control to. Once an INPUT
PROCEDURE has been aborted using a GO TO it cannot be resumed, and the contents of the sort work file are
lost. You may, however, re-execute the SORT statement itself. USING A “GO TO” TO PREMATURELY
TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-CANCELLED SORT IS NOT CONSIDERED GOOD
PROGRAMMING STYLE AND SHOULD BE AVOIDED.

An INPUT PROCEDURE is terminated in the same way a procedural PERFORM would be. Once the INPUT
PROCEDURE terminates, the input phase is complete.

d. The scope of the INPUT PROCEDURE must not allow a file-based SORT, MERGE or RETURN statement to be
executed.

STAGE 2 (the sort phase):

a. The sort will take place by arranging the data records in the sequence defined by the ASCENDING KEY and/or
DESCENDING KEY specification(s) on the SORT statement according to the COLLATING SEQUENCE specified on
the SORT (if any) or – if none was defined – the PROGRAM COLLATING SEQUENCE specified or implied by the
OBJECT-COMPUTER paragraph. Keys may be any supported data type and USAGE except for level-78 or level-
88 data items.

For example, let’s assume we’re sorting a series of financial transactions. The SORT statement might look like
this:

SORT Sort-File
 ASCENDING KEY Transaction-Date
 ASCENDING KEY Account-Number
 DESCENDING KEY Transaction-Amount
 .
 .
 .

The effect of this statement will be to sort all transactions into ascending order of the date the transaction took
place (oldest first, newest last). Unless the business running this program is going out of business, there are
most-likely many transactions for any given date – therefore, within each grouping of transactions all with the
same date, transactions will be sub-sorted into ascending sequence of the account number the transactions
apply to. Since it’s quite possible there might be multiple transactions for an account on any given date, a third
level sub-sort will arrange all transactions for the same account on the same date into descending sequence of
the actual amount of the transaction (largest first, smallest last). If two or more transactions of $100.00 were
recorded for account #12345 on the 31

st
 of August 2009, those transactions will be retained in the order in

which they were read from the USING file(s) or were RELEASEd to the SORT.

Stage 3 (the output phase):

a. Once the sort phase is complete, a copy of the sorted data will be written to each file-name-2 if the GIVING
clause was specified. When GIVING is specified, none of the file-name-2 files can be OPEN at the time the
SORT is executed.

b. When an OUTPUT PROCEDURE is used, the procedure(s) specified on the OUTPUT PROCEDURE clause will be
invoked as if by a procedural PERFORM statement with no VARYING or UNTIL options specified. Records will
be retrieved from the sort work file – one at a time and in sorted sequence – within the INPUT PROCEDURE
using the RETURN statement.

A GO TO statement that transfers control out of the OUTPUT PROCEDURE will terminate the SORT but allows
the program to continue executing from the point where the GO TO transferred control to. Once an OUTPUT
PROCEDURE has been aborted using a GO TO it cannot be resumed. You may, however, re-execute the SORT

35
 There is a runtime environment variable (COB_SORT_MEMORY) that you may use to allocate more or less memory to the

sorting process. See section 8.2.4.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-107

statement itself. USING A “GO TO” TO PREMATURELY TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-
CANCELLED SORT IS NOT CONSIDERED GOOD PROGRAMMING STYLE AND SHOULD BE AVOIDED.

c. Once the OUTPUT PROCEDURE terminates, the output phase – and the SORT statement itself - is complete.
Any sorted records that have not yet been RETURNed from the sort work file will be lost.

d. The scope of the OUTPUT PROCEDURE must not allow a file-based SORT, MERGE or RELEASE.

7. Should disk work files be necessary due to the amount of data being sorted, they will be automatically allocated to
disk in a folder defined by the TMPDIR, TMP or TEMP environment variables (checked for existence in that
sequence). These disk files will be automatically purged upon SORT termination or program execution termination
(normal or otherwise).

See Also…

Types of Files 1.3.3.5

The OBJECT-COMPUTER Paragraph 4.1.2

Describing the Structure of a File (FD/SD) 5.1

Defining Data Items 5.2

Storage Format of Data (USAGE) 5.2.1.11

The CLOSE Statement 6.4.7

The MERGE Statement 6.4.25

The OPEN Statement 6.4.29

The RELEASE Statement 6.2.33

The RETURN Statement 6.2.35

Execution-time Environment Variables 8.2.4

6.2.40.2. SORT Format 2 – Table Sort

Figure 6-101 - Table SORT Syntax

This format of the SORT statement sorts relatively
small quantities of data – namely data contained in
a DATA DIVISION table – according to one or more
key fields.

1. The table-name-1 data item must have an OCCURS clause in its definition.

2. The identifier-1 … field(s), if any, must be defined as data items subordinate to table-name-1.

3. The WITH DUPLICATES IN ORDER clause is supported for compatibility purposes, but is non-functional. See the
discussion of this clause in the previous section for more information.

4. The data within table-name-1 will be sorted in-place (i.e. no sort file is required) according to the KEY
specification(s) made on the SORT statement.

5. Although the specification of KEY clause(s) is optional
36

, currently, a table SORT with no KEY specification(s) made
on the SORT statement is unsupported by GNU COBOL and will be rejected by the compiler.

6. The sort will take place by arranging the data records in the sequence defined by the ASCENDING KEY and/or
DESCENDING KEY specification(s) on the SORT statement according to the COLLATING SEQUENCE specified on the
SORT (if any) or – if none was defined – the PROGRAM COLLATING SEQUENCE specified or implied by the OBJECT-
COMPUTER paragraph. Keys may be any supported data type and USAGE except for level-78 or level-88 data
items.

7. The SORT will be performed in-place within table-name-1 – no sort file is required.

36
 When lacking a KEY clause, according to the COBOL2002 standards, a table sort will use the table’s KEY clause

SORT table-name-1

[ON KEY identifier-1 …] …

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

ASCENDING
DESCENDING

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-108

6.2.41. START

Figure 6-102 - START Syntax

The START statement defines the logical starting point within a file for subsequent sequential read operations.

1. File-name-1 must be an ORGANIZATION RELATIVE or ORGANIZATION INDEXED file.

2. File-name-1 must have been SELECTed with an ACCESS MODE DYNAMIC or ACCESS MODE SEQUENTIAL.

3. File-name-1 must be OPEN in either INPUT or I-O mode at the time the START is executed.

4. If no KEY clause is specified, “KEY IS EQUAL TO identifier-1” will be assumed (see the next point for the definition of
identifier-1).

5. If file-name-1 is an ORGANIZATION RELATIVE file, identifier-1 must be the defined RELATIVE KEY of the file. If file-
name-1 is an ORGANIZATION INDEXED file, identifier-1 must be the defined RECORD KEY of the file (if no KEY
clause was specified) or may be the RECORD KEY or any of the ALTERNATE RECORD KEY fields for the file is a KEY
clause is specified.

6. After successful execution of a START statement, the internal record pointer into the file-name-1 data will be
positioned such that the next sequential READ statement executed against file-name-1 will read either:

a. The first record that satisfies the KEY clause specification if the relation check specified is EQUAL TO, GREATER
THAN or GREATER THAN OR EQUAL TO (or any of their syntactical equivalents), or …

b. The last record that satisfies the KEY clause specification if the relation check specified is LESS THAN or LESS
THAN OR EQUAL TO (or any of their syntactical equivalents).

7. The START statement only positions the file for a subsequent sequential READ – it does not actually populate file-
name-1s 01-level records with new data. You must issue a sequential READ after a successful START to actually
read the record that satisfies the KEY clause.

8. The optional invalid-key-clause may be used to detect and recover from errors encountered during execution of the
START. Such errors might be actual I/O errors or “Key Not Exists” errors (FILE STATUS 23), indicating no record
exists that satisfies the KEY clause requirements. Lacking such a clause, you’ll need to test the file’s FILE STATUS
data item manually after the START in order to determine success or failure.

See Also…

Types of Files 1.3.3.5

Defining File Characteristics (SELECT) 4.2.1

FILE-STATUS Values Figure
4-15

Relation Tests 6.1.8.2.5

The OPEN Statement 6.4.29

The READ Statement 6.4.31

START file-name-1

IS EQUAL TO | IS = | EQUALS
IS GREATER THAN | IS >

KEY IS IS GREATER THAN OR EQUAL TO | IS >= | IS NOT LESS THAN identifier-1
IS LESS THAN | IS <
IS LESS THAN OR EQUAL TO | IS <= | IS NOT GREATER THAN

[invalid-key-clause]

[END-START]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-109

6.2.42. STOP

Figure 6-103 - STOP Syntax

The STOP statement halts the
program, returning control to the
operating system.

1. The RUN clause halts the program without displaying any special message to that effect.

2. The literal-2 clause displays the specified text on SYSOUT/STDOUT, waits for the user to press the Enter key and
then – once the key has been pressed – allows the program to continue execution.

3. The optional RETURNING/GIVING clause (the RETURNING and GIVING clauses may be used interchangeably)
provides the opportunity to return a numeric value to the operating system (a “return code”). The manner in
which the return code may be interrogated by the operating system varies, but Windows can use %ERRORLEVEL%
to query the return code while Unix shells such as sh, bash and ksh can query the return code as “$?”. Other Unix
shells may have different ways to access return code values.

4. The STATUS clause provides another means of returning a return code. Using the STATUS clause with a
literal/identifier specification is functionally equivalent to using the RETURNING/GIVING clause.

Using the STATUS clause without a literal/identifier specification will return a return code of 0 if the NORMAL
keyword is used or a 1 if ERROR was specified.

5. Your program will ALWAYS return a return code, even if no RETURNING/GIVING or STATUS clause is specified. In
the absence of the use of these clauses, the value in the special register RETURN-CODE at the time the STOP
statement is executed will be used as the return code.

6. Any programmer-defined exit procedure (established via the CBL_EXIT_PROC built-in subroutine) will be executed
by STOP RUN, but not by STOP literal.

7. Valid return code values can be in the range -2147483648 to +2147483647.

8. The code snippets below are all equivalent – they show different ways in which a GNU COBOL program may be
coded to pass a return code value of 16 back to the operating system and then halt.

STOP RUN RETURNING 16 MOVE 16 TO RETURN-CODE
STOP RUN

STOP RUN WITH ERROR STATUS 16

See Also…

Built-in Device Names Figure
4-8

Special Registers 6.1.13

The CBL_EXIT_PROC Subroutine 8.3.1.25

RUN []

literal-3

STOP

RETURNING|GIVING

WITH STATUS []
ERROR
NORMAL

literal-2
identifier-2

literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-110

6.2.43. STRING

Figure 6-104 - STRING Syntax

The STRING statement is used to
concatenate all or a part of one or strings
together, forming a new string.

1. Literal-1, literal-2, identifier-1, identifier-2 and identifier-3 must be explicitly or implicitly defined as alphanumeric
USAGE DISPLAY data. Any of those identifiers may be group items.

2. Identifier-4 must be a non-edited elementary integer numeric data item with a value greater than zero.

3. Each literal-1 / identifier-1 will be known as a sending item.

4. During the processing of the STRING statement, data will be copied from each sending item, in turn, into identifier-
3, one character at a time at a position defined by the current character pointer.

5. The initial value of the current character pointer will be the value of identifier-4 at the time the STRING statement
began execution. If no WITH POINTER clause is coded, a value of 1 (meaning “the 1

st
 character position”) will be

assumed for the current character pointer.

6. For each sending item, the contents of the sending item will be copied – character-by-character – into identifier-3
at the character position specified by the current character pointer. After a character is copied, the current
character pointer will be incremented by 1 so that it points to the position within identifier-3 where the next
character should be copied.

7. The DELIMITED BY clause specifies how much of each sending item will be copied into the identifier-3. DELIMITED
BY SIZE (the default if no DELIMITED BY clause is specified) causes the entire contents of the sending item to be
copied into identifier-3. Using DELIMITED BY literal-2 or DELIMITED BY identifier-2 causes only the contents of the
sending item up to but not including the character sequence specified by the literal or identifier to be copied.

8. STRING processing will cease when one of the following occurs:

a. All sending items have been fully processed, or …

b. The initial value of the current character pointer is less than 1, or …

c. The value of the current character pointer exceeds the size of identifier-3 at the point the STRING statement
wants to copy a character into identifier-3

Events b and c reflect an overflow condition, which may be handled by use of the optional overflow-clause. Note
that in the case event b occurs, no data will be copied into identifier-3.

9. Identifier-3) is neither automatically initialized (to SPACES or any other value) at the start of a STRING statement
nor will it be SPACE filled should the total number of sending item characters copied into it be less than its size.
You may explicitly initialize identifier-3 yourself via the INITIALIZE or MOVE statements before executing the
STRING if you wish.

See Also…

Storage Format of Data (USAGE) 5.2.1.11

Handling Overflow (ON OVERFLOW) 6.1.12.5

The INITIALIZE Statement 6.2.22

The MOVE Statement 6.2.26

STRING
SIZE

{ [DELIMITED BY literal-2] } …
identifier-2

INTO identifier-3

[WITH POINTER identifier-4]

[overflow-clause]

[END-STRING]

literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-111

6.2.44. SUBTRACT

6.2.44.1. SUBTRACT Format 1 – SUBTRACT FROM

Figure 6-105 - SUBTRACT FROM Syntax

This format of the ADD statement generates the
arithmetic sum of all arguments that appear
before the FROM (identifier-1 or literal-1) and
subtracts that sum from each identifier-2.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Literal-1 must be a numeric literal.

3. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

6.2.44.2. SUBTRACT Format 2 – SUBTRACT GIVING

Figure 6-106 - SUBTRACT GIVING Syntax

This format of the SUBTRACT statement
generates the arithmetic sum of all
arguments that appear before the FROM
(identifier-1 or literal-1), subtracts that sum
from the contents of identifier-2 and then
replaces the contents of the identifiers listed
after the GIVING (identifier-3) with that
result.

1. Identifier-1 and identifier-2 must be numeric unedited data items.

2. Identifier-3 must be a numeric (edited or unedited) data item.

3. Literal-1 must be a numeric literal.

4. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

5. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also…

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

SUBTRACT

FROM { identifier-2 [rounding-option] } …

[size-error-clause]

[END-SUBTRACT]

literal-1
identifier-1

SUBTRACT

FROM identifier-2

GIVING { identifier-3 [rounding-option] } …

[size-error-clause]

[END-SUBTRACT]

literal-1
identifier-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-112

6.2.44.3. SUBTRACT Format 3 – SUBTRACT CORRESPONDING

Figure 6-107 - SUBTRACT CORRESPONDING Syntax

This format of the SUBTRACT statement generates code
equivalent to individual SUBTRACT FROM statements for
corresponding matches of data items found subordinate
to the two identifiers.

4. When corresponding matches are established, the effect of a SUBTRACT CORRESPONDING on those matches will
be as if a series of individual SUBTRACT FROM statements were done – one for each match.

5. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

6. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also…

The CORRESPONDING Clause 6.1.12.2

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

Rounding Options 6.1.12.7

SUBTRACT CORRESPONDING identifier-1

FROM identifier-2 [rounding-option]

[size-error-clause]

[END-SUBTRACT]

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-113

6.2.45. SUPPRESS

Figure 6-108 - SUPPRESS Syntax

Although syntactically recognized by the GNU COBOL compiler, the SUPPRESS
statement is non-functional because the RWCS (COBOL Report Writer) is not
currently supported by GNU COBOL.

SUPPRESS PRINTING

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-114

6.2.46. TERMINATE

Figure 6-109 - TERMINATE Syntax

Although syntactically recognized by the GNU COBOL compiler, the TERMINATE
statement is non-functional because the RWCS (COBOL Report Writer) is not
currently supported by GNU COBOL.

TERMINATE identifier-1 …

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-115

6.2.47. TRANSFORM

Figure 6-110 - TRANSFORM Syntax

The TRANSFORM statement scans a
data item performing a series of
monoalphabetic substitutions, defined
by the arguments before and after the
“TO” clause.

1. Both literal-1 and/or literal-2 must be alphanumeric literals.

2. All of identifier-1, identifier-2 and identifier-3 must either be group items or alphanumeric data items. Data items
that are PICTURE 9 USAGE DISPLAY are acceoted, but will generate warning messages from the compiler.

3. The TRANSFORM statement will replace characters within identifier-1 that are found in the string specified before
the TO keyword with the corresponding characters from the string specified after the TO keyword.

4. This statement exists within GNU COBOL only to provide compatibility with COBOL programs written to pre-1985
standards. The TRANSFORM verb was made obsolete in the 1985 standard of COBOL, having been replaced by the
CONVERTING clause of the INSPECT statement. New programs should be coded to use INSPECT CONVERTING
rather than TRANSFORM.

See Also…

Defining a Data Item’s PICTURE 5.2.1.6

Storage Format of Data (USAGE) 5.2.1.11

The INSPECT Statement 6.2.24.3

TRANSFORM identifier-1 FROM TO
literal-1
identifier-2

literal-2
identifier-3

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-116

6.2.48. UNLOCK

Figure 6-111 - UNLOCK Syntax

This statement syncs any as-yet unwritten file I/O buffers
to the specified file (if any) and releases any record locks
held for records belonging to the named file.

1. If file-name-1 is a Sort/Merge work file, no action will be taken.

2. Not all GNU COBOL implementations support locking. Whether they do or not depends upon the operating system
they were built for and the build options that were used when GNU COBOL was generated.

37
 When a program

using one of those GNU COBOL implementations issues an UNLOCK, it will ignored. There will be no compiler
message issued. Buffer syncing, if needed, will still occur.

See Also…

Record Locking 6.1.9.1

37
 The author of this manual – for example – uses a GNU COBOL build for Windows that utilizes the MinGW build/runtime

environment and uses the Berkeley Database module for advanced file I/O. That GNU COBOL build does NOT support LOCKing.
Generally speaking, UNIX builds will support record locking.

RECORD
RECORDSUNLOCK file-name-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-117

6.2.49. UNSTRING

Figure 6-112 - UNSTRING Syntax

The
UNSTRING
statement
parses a
string,
extracting
any
number of
substrings
from it.

1. Identifier-1 through identifier-5 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data. Any
of those identifiers may be group items.

2. Literal-1 and literal-2 must be alphanumeric literals.

3. Identifier-7 and identifier-8 must be elementary non-edited integer numeric items.

4. Identifier-7 must have a value greater than 0.

5. Identifier-1 is known as the source string. Identifier-4 is known as the destination field.

6. The source string will be broken up into substrings starting from the character position indicated by identifier-7 (or
from position 1 if there is no WITH POINTER clause). If the initial value of identifier-7 is less than 1 or greater than
the size of the source string, an “overflow” condition results. An overflow condition can be detected and dealt with
using the optional overflow-clause.

7. Substrings are identified by using the various delimiter strings specified on the DELIMITED BY clause as inter-
substring separators. Using the “ALL” option allows a delimiter sequence to be an arbitrarily long sequence of
occurrences of the delimiter literal whereas its absence treats each occurrence as a separate delimiter. When
multiple delimiters are specified, they will be looked for in the source string in the sequence in which they are
coded.

8. Two consecutive delimiter sequences will identify a null substring.

9. Each destination field may have an optional DELIMITER clause. If a DELIMITER clause is specified, identifier-5 will
have the delimiter character string used to identify the substring for the destination field MOVEd to it if and only if
data was actually found for that destination field (if not, identifier-5 remains unchanged).

10. Each destination field may have an optional COUNT clause. If a COUNT clause is specified, identifier-6 will have the
size of the substring for the destination field MOVEd to it if and only if data was actually found for that destination
field (if not, identifier-6 remains unchanged).

11. The TALLYING clause – if present – will be incremented by 1 each time a parsed substring is MOVEd to a
destination field.

12. None of identifier-4, identifier-5, identifier-6, identifier-7 or identifier-8 are initialized by the UNSTRING statement.
You need to do that yourself via MOVE or INITIALIZE.

UNSTRING identifier-1

DELIMITED BY [OR] …

INTO { identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6] } …

[WITH POINTER identifier-7]

[TALLYING IN identifier-8]

[overflow-clause]

[END-UNSTRING]

[ALL] literal-2
identifier-3

[ALL] literal-1
identifier-2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-118

The following sample program illustrates the UNSTRING statement.

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOUNSTRING.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Full-Name PIC X(40).
01 Parsed-Info.
 05 Last-Name PIC X(15).
 05 First-Name PIC X(15).
 05 MI PIC X(1).
 05 Delim-LN PIC X(1).
 05 Delim-FN PIC X(1).
 05 Delim-MI PIC X(1).
 05 Count-LN BINARY-CHAR.
 05 Count-FN BINARY-CHAR.
 05 Count-MI BINARY-CHAR.
 05 Tallying-Ctr BINARY-CHAR.
PROCEDURE DIVISION.
P1. PERFORM UNTIL EXIT
 DISPLAY "Enter Full Name (null quits):"
 WITH NO ADVANCING
 ACCEPT Full-Name
 IF Full-Name = SPACES
 EXIT PERFORM
 END-IF
 INITIALIZE Parsed-Info
 UNSTRING Full-Name DELIMITED BY ", "
 OR ","
 OR ALL SPACES
 INTO Last-Name DELIMITER IN Delim-LN
 COUNT IN Count-LN
 First-Name DELIMITER IN Delim-FN
 COUNT IN Count-FN
 MI DELIMITER IN Delim-MI
 COUNT IN Count-MI
 TALLYING Tallying-Ctr
 DISPLAY "First-Name=" First-Name
 " Delim='" Delim-FN
 "' Count=" Count-FN
 DISPLAY "MI =" MI " "
 " Delim='" Delim-MI
 "' Count=" Count-MI
 DISPLAY "Last-Name =" Last-Name
 " Delim='" Delim-LN
 "' Count=" Count-LN
 DISPLAY "Tally= " Tallying-Ctr
 END-PERFORM
 DISPLAY "Bye!"
 STOP RUN
 .

The following is sample output from the program:

Enter Full Name (null quits):Cutler, Gary L
First-Name=Gary Delim=' ' Count=+004
MI =L Delim=' ' Count=+001
Last-Name =Cutler Delim=',' Count=+006
Tally= +003
Enter Full Name (null quits):Snoddgrass,Throckmorton,P
First-Name=Throckmorton Delim=',' Count=+012
MI =P Delim=' ' Count=+001
Last-Name =Snoddgrass Delim=',' Count=+010
Tally= +003
Enter Full Name (null quits):Munster Herman
First-Name=Herman Delim=' ' Count=+006
MI = Delim=' ' Count=+000
Last-Name =Munster Delim=' ' Count=+007
Tally= +002
Enter Full Name (null quits):
Bye!

See Also…

Storage Format of Data (USAGE) 5.2.1.11

Handling Overflow (ON OVERFLOW) 6.1.12.5

The INITIALIZE Statement 6.2.22

The MOVE Statement 6.2.26

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-119

6.2.50. WRITE

Figure 6-113 - WRITE Syntax

The WRITE statement writes a new record
to an OPEN file.

1. Record-name-1 must be defined as an 01-level record subordinate to the File Description (FD) of a file that is
currently OPEN for OUTPUT, I-O or EXTEND.

2. Literal-1 or identifier-1 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data. Identifier-1
may be a group item.

3. The optional FROM clause will cause literal-1 or identifier-1 to be implicitly MOVEd into record-name-1 prior to
writing record-name-1 to the file.

4. The optional LOCK clauses allow you to lock the newly-written record (LOCK) or to explicitly state that it should not
be locked (NO LOCK). The default is WITH NO LOCK.

5. The optional invalid-key-clause is legal only on WRITE statements used against for ORGANIZATION RELATIVE or
ORGANIZATION INDEXED files; it may be used to detect and recover from situations where a non-zero FILE STATUS
results from the WRITE (as might be the case if you try to WRITE a relative file record that already exists (use
REWRITE instead) or attempt to duplicate a RECORD KEY value when WRITEing to an INDEXED file.

The following points apply exclusively to files SELECTed and ASSIGNed to a LINE ADVANCING file, or to files with an
ORGANIZATION of LINE SEQUENTIAL

6. The ADVANCING and END-OF-PAGE clauses are intended for use only with these types of files. Using this clause
with any other ORGANIZATION will either be rejected outright by the compiler (ORGANIZATION IS RELATIVE or
ORGANIZATION IS INDEXED) or may introduce unwanted characters into the file (ORGANIZATION IS RECORD
BINARY SEQUENTIAL).

7. Both of these file types will use an end-of-record delimiter character sequence to signify where one record ends
and the next record begins. This delimiter sequence may be any of the following:

a. A line-terminator sequence consisting of an ASCII carriage-return/line-feed character sequence (X’0D0A’) if you
are running a MinGW or native Windows build of GNU COBOL

b. A line-terminator sequence consisting of an ASCII line-feed character (X’0A’) if you are running a Cygwin, Linix,
Unix or OSX build of GNU COBOL

c. An ASCII formfeed character

8. If no ADVANCING clause is specified on a WRITE to an ORGANIZATION LINE SEQUENTIAL file, BEFORE ADVANCING

WRITE record-name-1

[FROM]

WITH LOCK
WITH NO LOCK

[ADVANCING]

[AT END-OF-PAGE| EOP imperative-statement-1]

[NOT AT END-OF-PAGE | EOP imperative-statement-2]

[invalid-key-clause]

[END-WRITE]

literal-1
identifier-1

AFTER
BEFORE

literal-2
identifier-2

LINE|LINES

mnemonic-name-1

PAGE

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-120

The following points apply exclusively to files SELECTed and ASSIGNed to a LINE ADVANCING file, or to files with an
ORGANIZATION of LINE SEQUENTIAL

1 LINE will be assumed.

9. If no ADVANCING clause is specified on a WRITE to a LINE ADVANCING file, AFTER ADVANCING 1 LINE will be
assumed.

10. When BEFORE ADVANCING is used (or implied), the record is written to the file before the ADVANCING action
writes line-terminator characters to the file.

11. If AFTER ADVANCING is used (or implied), the ADVANCING action takes place and then the record data is written
to the file.

12. The ADVANCING n LINES clause will introduce the specified number of line-terminator character sequences into
the file either before the written record (AFTER ADVANCING) or after the written record (BEFORE ADVANCING).

13. If the LINAGE clause is absent from the file’s FD:

a. The ADVANCING PAGE clause will introduce an ASCII formfeed character into the file either before the written
record (AFTER PAGE) or after the written record (BEFORE ADVANCING).

b. Management of areas on the printed page such as top-of page headers, bottom-of-page footers, dealing with
“full page” situations and the like are the complete responsibility of the programmer

14. If the LINAGE clause is present in the file’s FD:

a. The ADVANCING PAGE clause will introduce the appropriate number of line-terminator character sequences
into the file either before the written record (AFTER ADVANCING) or after the written record (BEFORE
ADVANCING) so as to force the printer to automatically advance to a new sheet of paper when the file prints.
When LINAGE is specified, no formfeed characters will be generated. Instead, it is assumed that the printer to
which the report will be printed will be loaded with special forms with specific characteristics as to page body
size (the total number of printable lines on the paper) and skipped top- and/or bottom-of-page margins within
which printing physically could occur, but in the case of these forms shouldn’t.

b. Management of areas on the printed page such as top-of page headers, bottom-of-page footers, dealing with
“full page” situations and the like are now the joint responsibility of the programmer and the GNU COBOL run-
time library, which provides tools such as the LINAGE-COUNTER special; register and the AT END-OF-PAGE
clause on the WRITE statement to deal with page formatting issues.

c. The AT END-OF-PAGE and NOT AT END-OF-PAGE clauses are legal only for ORGANIZATION LINE SEQUENTIAL
or ORGANIZATION RECORD BINARY SEQUENTIAL files whose file descriptions contain a LINAGE clause. The AT
END-OF-PAGE clause will be triggered (thus executing imperative-statement-1) if the WRITE statement
introduces a data line or line-feed character into the file at a line position within the Page Footer area (see
Figure 5-3). The NOT AT END-OF-PAGE clause will be triggered (thus executing imperative-statement-2) if no
end-of-page condition occurred during the WRITE.

A report is to be written to a special form that consists of
24 total possible printed lines; the layout of the report is
shown to the right.

The GNU COBOL LINAGE clause that describes this layout
is as follows. Colors in the code below relate to the
colored areas on the page layout.

LINAGE IS 20 LINES
FOOTING 19
LINES AT TOP 2
LINES AT BOTTOM 2

The total vertical size of the form (as measured in
printable lines) is the sum of the LINES AT TOP, LINAGE
and LINES AT BOTTOM clause values. The FOOTING
clause indicates at what relative line number within the

16-LINE DETAIL AREA

2-Line Page Header
(2nd line blank)

2-Line Page Footer
(1st line blank)

2 Blank Lines

2 Blank Lines

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
21
22

23
24

1
2

3
4
5
6
7

8
9
10
11

12
13
14
15
16

17
18
19
20

20-Line Page Body

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-121

page body (the value specified on the LINAGE clause) the detail area is to end and the footer area is to begin. It is at the
point where printing reaches this FOOTING point that an END-OF-PAGE condition exists.

The following program generates a test report (of 25 detail lines) using the page layout just described.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DEMOLINAGE.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT Data-File ASSIGN TO
 "linage-ls.txt"
 LINE SEQUENTIAL.
 DATA DIVISION.
 FILE SECTION.
 FD Data-File
 LINAGE IS 20 LINES
 FOOTING 19
 LINES AT TOP 2
 LINES AT BOTTOM 2.
 01 Data-Rec.
 05 FILLER PIC X(7).
 05 DR-Write-No PIC 9(2).
 05 FILLER PIC X(28).
 05 DR-LINAGE-COUNTER PIC 9(3).
 WORKING-STORAGE SECTION.
 01 Flags.
 05 Report-Complete-Flag PIC X(1).
 88 Report-Complete VALUE 'Y' FALSE IS 'N'.
 01 I PIC 9(2).
 PROCEDURE DIVISION.
 000-Main.
*>--------------------
*> Open the report file and print the initial page
*> header
*>--------------------
 OPEN OUTPUT Data-File
 SET Report-Complete TO FALSE
 PERFORM 100-Page-Header
*>--------------------
*> Print 25 report detail lines
*>--------------------
 PERFORM VARYING I FROM 1 BY 1 UNTIL I > 25
 MOVE "Detail NN LINAGE-COUNTER="
 TO Data-Rec
 MOVE I TO DR-Write-No
 MOVE LINAGE-COUNTER OF Data-File
 TO DR-LINAGE-COUNTER
 WRITE Data-Rec
 AT EOP
 IF LINAGE-COUNTER >= 19
 PERFORM 200-Page-Footer
 PERFORM 100-Page-Header
 ELSE
 PERFORM 100-Page-Header
 END-IF
 END-WRITE
 END-PERFORM
*>--------------------
*> Print enough blank detail lines to produce the
*> final page footer
*>--------------------
 SET Report-Complete TO TRUE
 PERFORM UNTIL LINAGE-COUNTER OF DATA-FILE >= 19
 MOVE ' LINAGE-COUNTER='
 TO Data-Rec
 MOVE LINAGE-COUNTER OF Data-File
 TO DR-LINAGE-COUNTER
 WRITE Data-Rec
 AT EOP
 PERFORM 200-Page-Footer
 EXIT PERFORM
 END-WRITE
 END-PERFORM

And here are the pages of the generated report:

1.
2.

3. Page Header LINAGE-COUNTER= 001
4.
5. Detail 01 LINAGE-COUNTER= 003

6. Detail 02 LINAGE-COUNTER= 004
7. Detail 03 LINAGE-COUNTER= 005
8. Detail 04 LINAGE-COUNTER= 006

9. Detail 05 LINAGE-COUNTER= 007
10. Detail 06 LINAGE-COUNTER= 008

11. Detail 07 LINAGE-COUNTER= 009
12. Detail 08 LINAGE-COUNTER= 010
13. Detail 09 LINAGE-COUNTER= 011

14. Detail 10 LINAGE-COUNTER= 012
15. Detail 11 LINAGE-COUNTER= 013

16. Detail 12 LINAGE-COUNTER= 014
17. Detail 13 LINAGE-COUNTER= 015
18. Detail 14 LINAGE-COUNTER= 016

19. Detail 15 LINAGE-COUNTER= 017
20. Detail 16 LINAGE-COUNTER= 018
21.

22. Page Footer LINAGE-COUNTER= 020
23.

24.

1.
2.

3. Page Header LINAGE-COUNTER= 001
4.
5. Detail 17 LINAGE-COUNTER= 003

6. Detail 18 LINAGE-COUNTER= 004
7. Detail 19 LINAGE-COUNTER= 005

8. Detail 20 LINAGE-COUNTER= 006
9. Detail 21 LINAGE-COUNTER= 007

10. Detail 22 LINAGE-COUNTER= 008

11. Detail 23 LINAGE-COUNTER= 009
12. Detail 24 LINAGE-COUNTER= 010

13. Detail 25 LINAGE-COUNTER= 011
14. LINAGE-COUNTER= 012
15. LINAGE-COUNTER= 013

16. LINAGE-COUNTER= 014
17. LINAGE-COUNTER= 015
18. LINAGE-COUNTER= 016

19. LINAGE-COUNTER= 017
20. LINAGE-COUNTER= 018

21.
22. Page Footer LINAGE-COUNTER= 020
23.

24.

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

11FEB2012 Version 6-122

*>--------------------
** All done!
*>--------------------
 CLOSE Data-File
 STOP RUN
 .
 100-Page-Header.
 MOVE "Page Header LINAGE-COUNTER="
 TO Data-Rec
 MOVE LINAGE-COUNTER OF Data-File TO
 DR-LINAGE-COUNTER
 WRITE Data-Rec BEFORE ADVANCING 2 LINES
 .
 200-Page-Footer.
 WRITE Data-Rec FROM SPACES
 BEFORE ADVANCING 1 LINES
 MOVE "Page Footer LINAGE-COUNTER="
 TO Data-Rec
 MOVE LINAGE-COUNTER OF Data-File
 TO DR-LINAGE-COUNTER
 IF Report-Complete
*>--------------------
*> "BEFORE 0 LINES" Won't push into the next page
*>--------------------
 WRITE Data-Rec BEFORE ADVANCING 0 LINES
 ELSE
 WRITE Data-Rec BEFORE ADVANCING PAGE
 END-IF
 .

See Also…

Types of Files 1.3.3.5

Defining File Characteristics (SELECT) 4.2.1

FILE-STATUS Values Figure
4-15

Describing the Structure of a File (FD/SD) 5.1

Describing Record Layouts 5.1.1

Storage Format of Data (USAGE) 5.2.1.11

Handling Invalid Keys (INVALID KEY) 6.1.12.3

The CLOSE Statement 6.4.7

The MOVE Statement 6.2.26

The OPEN Statement 6.4.29

The REWRITE Statement 6.4.36

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 6-1

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-2

7. Sub-Programming with GNU COBOL

7.1. Subprograms, Subroutines and User-Defined Functions

Simply stated, a SUBPROGRAM is a program that is invoked by another program; the subprogram performs whatever
its designed operations are and – when complete – typically returns control back to the program that invoked it.
There are two different types of subprograms supported by GNU COBOL – subroutines and user-defined functions.
The distinction between these two subprogram types lies in the manner in which they are executed.

When program “A” invokes subprogram “B” as a SUBROUTINE, it does so using a special statement dedicated to that
function – the CALL statement – just as if “B” were one of the built-in system subroutines. When program “A” invokes
program “B” as a USER-DEFINED FUNCTION, it does so in a manner identical to how “B” would have been invoked had
it been one of the many built-in intrinsic functions. In either instance, program “A” is referred to as the CALLING
PROGRAM while program- “B” is known as the CALLED PROGRAM. GNU COBOL programs may be a calling program, a
called program or both. A program written in the C programming language may serve as either the calling or called
program too. A called program may act as a calling program to a called program. When a calling program does not
serve as a called program to any program, that calling program is known as a MAIN PROGRAM.

Both subroutines and user-defined functions may return a value. The value they return will be a USAGE BINARY LONG
SIGNED integer in the range -2147483648 to +2147483647. This value will be available in the register RETURN-CODE
and also as the value of the data item specified on the RETURNING/GIVING clause of a subroutine’s CALL.

See Also…

Storage Format of Data (USAGE) 5.2.1.11

Intrinsic Functions 6.1.7

Special Registers 6.1.13

The CALL Statement 6.4.5

Built-in System Subroutines 8.3

7.2. Specifying and Using Alternate Entry Points

Any subroutine (but not a user-defined function) may have multiple entry-points defined within it. This means the
subroutine could be called either via a “CALL ‘effective-program-name” or a “CALL ‘entry-point’” statement. There
may be any number of alternate entry-points defined within a subroutine.

The intent of alternate entry-points is to provide multiple ways in which the same subroutine could be CALLed, under
the assumption that each entry-point will provide some different functionality to the calling program. For example, if
you wished to write a subroutine that manipulates “student” records in a database, you might have the primary entry-
point name (section 3) be for the coding that retrieves a student record from the database, while the alternate entry
points “ADD-STUDENT”, “UPDATE-STUDENT” and “DELETE-STUDENT” provide the alternate functions implied by their
entry-point names. The alternative to using multiple entry points in your subroutine, by the way, would be to include
an additional argument to the primary (and only) entry point of the subroutine; this new argument might be named
“STUDENT-FUNCTION” and might have values of “FETCH”, “ADD”, “UPDATE” or “DELETE”.

The primary entry-point for any subroutine is always the first executable (and non-DECLARATIVES) statement in the
PROCEDURE DIVISION. The name of that entry-point (the name that will be CALLed) is the subroutine’s PROGRAM-
ID.

Alternate entry points are added to a subroutine simply by adding ENTRY statements to the subroutine.

When an alternate entry-point is CALLed, execution within the subroutine will begin at the first executable statement
following the ENTRY statement.

See Also…

The IDENTIFICATION DIVISION 3

Using DECLARATIVES 6.1.4

The CALL Statement 6.4.5

The ENTRY Statement 6.2.14

7.3. Dynamic Versus Static Subprograms

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-3

Any subprogram may be either statically or dynamically loaded into memory.

STATICALLY-LOADED (or simply STATIC) subprograms are part of the same executable file as their calling program and
are loaded into memory as part of and at the same time as the calling program. DYNAMICALLY-LOADED (or
DYNAMIC) subprograms exist as an executable file separate from that containing the calling program; these dynamic
subprograms are located and loaded into memory the first time they are executed. Dynamic subprograms may be
unloaded from memory via the CANCEL statement, if desired.

There are no functional differences between static and dynamic subprograms other than how they are compiled and
when they are loaded into memory.

Here are the rules about GNU COBOL dynamically-loadable subprogram modules:

1. There may be any number of GNU COBOL subprograms contained within a single dynamically-loadable module.

2. Dynamically-loadable modules will be named “xxxxxxxx.dll” on a Windows system or “xxxxxxxx.so” on a Unix
system, where “xxxxxxxx” exactly matches, including the usage of upper- and lower-case letters, the primary
entry-point name (PROGRAM-ID) or an alternate entry point name defined via the ENTRY statement of one of the
GNU COBOL programs included in that module.

3. The first time any of the GNU COBOL subprograms in the dynamically-loadable module are invoked, the entry-
point referenced must be the one for which the “.dll” or “.so” file is named (see rule #2).

4. The dynamically-loadable module file will be sought in the same directory from which the main program was
loaded. If it cannot be found there, each directory named in the PATH that is in-effect for the main program’s
execution will be searched. If it still cannot be found, execution will be terminated with an error message
(“libcob: Cannot find module 'xxxxxxxx'”).

5. Once the dynamically-loadable module has been successfully loaded (see rule #3), any of the entry-points
contained within it are now available for reference, even if the dynamically-loadable module is subsequently
CANCELed.

See Also…

The IDENTIFICATION DIVISION 3

The CANCEL Statement 6.2.6

The ENTRY Statement 6.2.14

Compiling & Dynamic-Linking Programs 8.1.3.2

Compiling & Static-Linking Programs 8.1.3.3

7.4. Subprogram Execution Flow

When a subprogram is invoked, the flow of execution will differ slightly depending on whether the subprogram is a
subroutine or a user-defined function.

7.4.1. Subroutine Execution Flow

1. The calling program issues a statement of the form CALL “entry-point” USING … to transfer control to the
subroutine.

2. The called program will be located. If it is a STATIC subroutine it will already be part of the executable program
issuing the CALL. If it is a DYNAMIC subroutine, it will be located and loaded as needed.

3. Execution of the calling program is suspended and control will transfer to the called program, as follows:

a. If the PROGRAM-ID clause of the subprogram included the INITIAL clause (section 3), the program will be
reinitialized back to its compile-time state.

b. LOCAL-STORAGE, if any, will be allocated and initialized.

c. Execution will begin at the first executable statement following the subprograms entry-point. The entry point
will be either:

 The top of the PROCEDURE DIVISION, following any DECLARATIVES that might be present, if the
subprogram was invoked using its primary entry-point name.

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-4

 The first executable statement following the ENTRY statement naming the entry-point specified on the
CALL if the subprogram was invoked using an alternate entry point.

4. The flow of execution will then progress through the coding of the subprogram as it would with any other
program.

5. If the subprogram issues a STOP RUN statement, program execution ceases and control returns to the operating
system or whatever execution monitor invoked the main program.

6. If the subprogram wishes to return control back to the calling program, it will do so using either the GOBACK or
EXIT PROGRAM statement. At this time:

a. If the subprograms PROCEDURE DIVISION header or ENTRY statements included a RETURNING clause, the
value of the data item found on that clause is MOVEd to the RETURN-CODE special register

38
.

b. LOCAL-STORAGE, if any, is de-allocated.

c. If the calling program included a RETURNING clause on the CALL statement that invoked the subprogram, the
value of the “RETURNING” data item in the subroutine (see #6.a above) is MOVEd to that data item.

d. Execution will resume back in the calling program with the first executable statement following the CALL that
invoked the subprogram.

See Also…

The IDENTIFICATION DIVISION 3

The DATA DIVISION 5

The PROCEDURE DIVISION 6

Special Registers 6.1.13

Using DECLARATIVES 6.1.4

The CALL Statement 6.4.5

The ENTRY Statement 6.2.14

The EXIT PROGRAM Statement 6.2.16

The GOBACK Statement 6.2.19

The STOP RUN Statement 6.4.42

Dynamic vs Static Subprograms 7.3

7.4.2. User-Defined Function Execution Flow

1. The calling program, while in the process of evaluating an expression, encounters a reference to a user-defined
function. Note that, unlike the built-in intrinsic functions, user-defined functions need never have the
“FUNCTION” keyword coded in their references; the reason for this is that any program referencing a user-
defined function must include that function in its REPOSITORY paragraph – that is sufficient to allow the compiler
to recognize the function name as a function when it encounters a reference to it.

2. The called program which is that user-defined function will be located. If it is a STATIC user-defined function it
will already be part of the executable program. If it is a DYNAMIC user-defined function, it will be located and
loaded. Note that user-defined functions can only have primary entry points – the ENTRY statement is not valid
within a user-defined function.

3. Execution of the calling program is suspended and control will transfer to the called program, as follows:

a. LOCAL-STORAGE, if any, will be allocated and initialized.

b. Execution will begin at the top of the PROCEDURE DIVISION, following any DECLARATIVES that might be
present.

4. The flow of execution will then progress through the coding of the subprogram as it would with any other
program.

5. If the subprogram issues a STOP RUN statement, program execution ceases and control returns to the operating
system or whatever execution monitor invoked the main program.

38
 This behavior can be altered utilizing the CALL-CONVENTION feature of the SPECIAL-NAMES paragraph to define a subroutine

calling convention that leaves RETURN-CODE unchanged, and then using that calling convention on the CALL that invokes the
subroutine.

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-5

6. If the subprogram wishes to return control back to the calling program, it will do so using either the GOBACK or
EXIT FUNCTION statement. At this time:

a. The value of the data item found on the user-defined functions PROCEDURE DIVISION RETURNING clause is
MOVEd to the RETURN-CODE special register.

b. LOCAL-STORAGE, if any, is de-allocated.

c. Execution will resume back in the calling program at the point in the expression evaluation process where the
returned value of the function is needed. At that point, the value in the RETURN-CODE special register will be
used for the functions value.

See Also…

The REPOSITORY Paragraph 4.1.3

The DATA DIVISION 5

Special Registers 6.1.13

Using DECLARATIVES 6.1.4

The ENTRY Statement 6.2.14

The EXIT FUNCTION Statement 6.2.16

The GOBACK Statement 6.2.19

The STOP RUN Statement 6.4.42

Dynamic vs Static Subprograms 7.3

7.5. Sharing Data Between Calling and Called Programs

7.5.1. Subprogram Arguments

7.5.1.1. Calling Program Considerations

Data items defined in a calling program may be passed to either type of called program (subroutine or user-defined
function) as ARGUMENTS.

Arguments must be described in both the calling and called programs, and should be described in an identical manner
with regard to the following characteristics:

 PICTURE (including both type and length)
 SIGN
 SYNCHRONIZED
 USAGE

A subroutine may be passed a maximum of 36 arguments
39

. There is no built-in GNU COBOL limit to how many
arguments a user-defined function may be passed.

Whether or not changes made to an argument within a subroutine will be “visible” to the calling program depends on
how the argument was passed. There are three ways in which arguments may be passed from a calling program to a
subroutine, as defined by the use of optional “BY” clauses in the CALL statement’s list of arguments.

As an example, the following CALL statement passes three arguments to a subroutine – each argument is passed
differently.

CALL “subroutine” USING BY REFERENCE arg-1
 BY CONTENT arg-2
 BY VALUE arg-3
END-CALL

The three ways arguments are passed are as follows.

BY REFERENCE When a subroutine argument is passed BY REFERENCE, the subroutine is passed the address of the
actual data item being passed as an argument. The item may anything defined within the DATA
DIVISION of the program. If the subroutine modifies the contents of this argument, the calling

39
 If you build the GNU COBOL software yourself from the distributed source, you CAN change this value by altering the defined

value of COB_MAX_FIELD_PARAMS in the “common.h” header file.

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-6

program will “see” the results of that change when the subroutine returns control. This is the
default manner in which GNU COBOL passes arguments to a subroutine, should no “BY” clauses be
included on the CALL.

BY CONTENT When a subroutine is passed an argument BY CONTENT, the subroutine is passed the address of a
copy of the actual data being passed as an argument. The item may anything defined within the
DATA DIVISION of the program. The copy is made each time the CALL statement is executed,
immediately before the CALL is actually executed. If the subroutine modifies the contents of this
argument, it will be the copy that is modified, not the original data item specified on the CALL; the
calling program will therefore not “see” the results of that change when the subroutine returns
control.

BY VALUE Passing a subroutine argument BY VALUE passes the actual value of the data being passed as an
argument. The item may any elementary binary numeric item (see Figure 7-1) defined within the
DATA DIVISION of the program. If the subroutine modifies the contents of this argument, the calling
program will not “see” the results of that change when the subroutine returns control.

The first two ways in which arguments may be passed (BY REFERENCE and BY CONTENT) are intended for use when a
GNU COBOL program, is being called, while the first and third (BY REFERENCE and BY VALUE) are intended for use
when a C program is being called. You can use BY VALUE arguments when calling GNU COBOL subroutines, but
remember that those arguments are limited to being a numeric binary data type.

Each “BY” clause on a CALL statement may list multiple arguments.

Arguments to user-defined functions are automatically passed BY REFERENCE.

See Also…

Defining Data Items 5.2

The CALL Statement 6.4.5

Subprograms: Subroutines vs Functions 7.1

7.5.1.2. Called Program Considerations

When coding a GNU COBOL subprogram (a subroutine or user-defined function), all arguments to the subprogram
must be defined in the subprogram’s LINKAGE SECTION. These arguments must be explicitly included on the
PROCEDURE DIVISION header via a “USING” clause that lists the arguments in the sequence in which they will be
passed to the subprogram.

These arguments listed in a USING clause included on the PROCEDURE DIVISION header may each be defined as
either “BY REFERENCE”, if they are being passed to the subprogram as “BY REFERENCE” or “BY CONTENT” arguments
(on the CALL) or as “BY VALUE” if they are being passed “BY VALUE”. By default, all arguments are assumed to be “BY
REFERENCE” unless explicitly stated otherwise. Arguments to a user-defined function are always to be specified as
“BY REFERENCE” (either explicitly or by not using any “BY”).

If the subprogram returns a value, the data item in which the value is returned must also be defined in the
subprogram’s LINKAGE SECTION, with an effective PICTURE and USAGE of BINARY-LONG SIGNED.

See Also…

Defining a Data Item’s PICTURE 5.2.1.6

Storage Format of Data (USAGE) 5.2.1.11

The PROCEDURE DIVISION 6

7.5.2. GLOBAL Data Items

Another way in which a data item may be shared between a calling program (“A”) and a called program (“B”) is by
defining the data item in the calling program and attaching the GLOBAL clause to it so that it may be used within the
called program. In order for this to work, program “B” (the one called by program “A”) must be a nested subprogram
within program “A”.

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-7

Here’s a small example:

Program Source Code DISPLAYed Output When Executed

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DemoGLOBAL.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Arg GLOBAL PIC X(10).
 PROCEDURE DIVISION.
 000-Main.
 MOVE ALL "X" TO Arg
 CALL "DemoSub" END-CALL
 DISPLAY "DemoGLOBAL: " Arg END-DISPLAY
 GOBACK
 .

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DemoSub.
 PROCEDURE DIVISION.
 000-Main.
 MOVE ALL "*" TO Arg.
 GOBACK
 .
 END PROGRAM DemoSub.

 END PROGRAM DemoGLOBAL.

DemoGLOBAL: **********

See Also…

Details of Nested Subprograms 7.6

7.5.3. EXTERNAL Data Items

The final way in which a data item may be shared between a calling program (“A”) and a called program (“B”) is by
defining the data item (with the same name) in both programs and attaching the EXTERNAL clause to it (again, in both
programs). This approach works regardless of whether the called program is nested within the calling program or not.
It also works even if the two programs are compiled separately.

Here’s a small example:

Program Source Code DISPLAYed Output When Executed

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DemoEXTERNAL.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Arg EXTERNAL PIC X(10).
 PROCEDURE DIVISION.
 000-Main.
 MOVE ALL "X" TO Arg
 CALL "DemoSub" END-CALL
 DISPLAY "DemoEXTERNAL: " Arg END-DISPLAY
 GOBACK
 .
 END PROGRAM DemoEXTERNAL.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DemoSub.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Arg EXTERNAL PIC X(10).
 PROCEDURE DIVISION.
 000-Main.
 MOVE ALL "*" TO Arg.
 GOBACK
 .
 END PROGRAM DemoSub.

DemoEXTERNAL: **********

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-8

7.6. Nested Subprograms

Normally, GNU COBOL source files contain the coding for a single program; that program may be a main program or a
subprogram.

There’s no reason, however, why you cannot include multiple GNU COBOL programs into a single source file – one
after the other – provided you structure the programs in the source file as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.
…
END PROGRAM PROG1.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG2.
…
END PROGRAM PROG2.

Program source code may be concatenated as shown here, provided an
“END PROGRAM” statement naming the PROGRAM-ID of the just-
completed program is used to separate one program from another.

There’s no reason that user-defined functions cannot be included too –
they’ll just have FUNCTION-IDs and will be ended by “END FUNCTION”
statements.

The last program in any GNU COBOL source file need not have an END
PROGRAM (or END FUNCTION) statement.

When multiple programs occur in a source file, it is assumed that the
programs are related to one another in that they will be CALLed or
executed as functions from the others.

It is also possible to create source files where GNU COBOL programs are nested inside each other. Take for example
these four GNU COBOL programs:

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.
…
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG2.
…
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG3.
…
END PROGRAM PROG3.
END PROGRAM PROG2.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG4.
…
END PROGRAM PROG4.
END PROGRAM PROG1.

Here we see that PROG2 is nested inside of PROG1 because there is no
END PROGRAM statement separating them. This means that data items
or files defined within PROG1 can be used within PROG2 simply by
attaching the “GLOBAL” attribute to them back in PROG1 when they are
defined.

Similarly, since there is no END PROGRAM statement separating PROG3
from PROG2, it is possible for PROG3 to access GLOBAL files and data
items defined within PROG2. Since PROG2 is nested within PROG1, any
GLOBAL resources defined within PROG1 will be available to PROG3 as
well.

The two END PROGRAM statements for PROG3 and PROG2 (note their
sequence) mean that PROG4 is nested within PROG1 only. It will not have
access to any GLOBAL resources defined within either PROG2 or PROG3.

See Also…

Program Structure 1.5.2

The IDENTIFICATION DIVISION 3

The CALL Statement 6.4.5

7.7. Recursive GNU COBOL Subprograms

It is possible for a subroutine to CALL itself, either directly or indirectly from another subroutine that it CALLs. Any
subroutine that indulges in this sort of behavior (called RECURSION) is called a RECURSIVE SUBROUTINE. A GNU
COBOL subroutine can be recursively invoked only if it is defined to the GNU COBOL compiler as being a recursive
subroutine. This is accomplished by adding the RECURSIVE attribute to the subroutines PROGRAM-ID clause.

All User-defined functions can be invoked recursively.

Here is an example of a main program (DEMOFACT) that CALLs both a subprogram (RECURSIVESUB) and a user-
defined function (RECURSIVEFUNC) to compute the factorial value of a number.

DEMOFACT
(Main Program)

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-9

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOFACT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

 FUNCTION RECURSIVEFUNC.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Result USAGE BINARY-LONG.

01 Arg USAGE BINARY-LONG VALUE 6.

PROCEDURE DIVISION.

000-Main.

 CALL "RECURSIVESUB"

 USING BY CONTENT Arg

 RETURNING Result

 DISPLAY Arg "! = "

 Result

 DISPLAY Arg "! = "

 RECURSIVEFUNC(Arg)

 GOBACK

 .

END PROGRAM DEMOFACT.
RECURSIVESUB

(a RECURSIVE subroutine)
RECURSIVEFUNC

(a user-defined function)
IDENTIFICATION DIVISION.

PROGRAM-ID. RECURSIVESUB RECURSIVE.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Result USAGE BINARY-LONG.

01 Next-Arg USAGE BINARY-LONG.

01 Next-Result USAGE BINARY-LONG.

LINKAGE SECTION.

01 Arg USAGE BINARY-LONG.

PROCEDURE DIVISION USING Arg RETURNING Result.

000-Main.

 DISPLAY "Entering RECURSIVESUB Arg=" Arg

 IF Arg = 1

 MOVE 1 TO Result

 DISPLAY "Leaving RECURSIVESUB Returning "

Result

 ELSE

 SUBTRACT 1 FROM Arg GIVING Next-Arg

 CALL "RECURSIVESUB"

 USING BY CONTENT Next-Arg

 RETURNING Next-Result

 COMPUTE Result = Arg * Next-Result

 DISPLAY "Leaving RECURSIVESUB Returning "

 Result "=" Arg "*" Next-Result

 END-IF

 GOBACK

 .

END PROGRAM RECURSIVESUB.

IDENTIFICATION DIVISION.

FUNCTION-ID. RECURSIVEFUNC.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

 FUNCTION RECURSIVEFUNC.

DATA DIVISION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

01 Arg USAGE BINARY-LONG.

01 Result USAGE BINARY-LONG SIGNED.

PROCEDURE DIVISION USING Arg RETURNING Result.

000-Main.

 DISPLAY "Entering RECURSIVEFUNC Arg=" Arg

 IF Arg = 1

 MOVE 1 TO Result

 ELSE

 COMPUTE Result = Arg *

 RECURSIVEFUNC(Arg - 1)

 END-IF

 DISPLAY "Leaving RECURSIVEFUNC Returning "

Result

 GOBACK

 .

END FUNCTION RECURSIVEFUNC.

When DEMOFACT is executed,
the output shown to the right
is generated.

E:\Programs\Demos>demofact

Entering RECURSIVESUB Arg=+0000000006

Entering RECURSIVESUB Arg=+0000000005

Entering RECURSIVESUB Arg=+0000000004

Entering RECURSIVESUB Arg=+0000000003

Entering RECURSIVESUB Arg=+0000000002

Entering RECURSIVESUB Arg=+0000000001

Leaving RECURSIVESUB Returning +0000000001

Leaving RECURSIVESUB Returning +0000000002=+0000000002*+0000000001

Leaving RECURSIVESUB Returning +0000000006=+0000000003*+0000000002

Leaving RECURSIVESUB Returning +0000000024=+0000000004*+0000000006

Leaving RECURSIVESUB Returning +0000000120=+0000000005*+0000000024

Leaving RECURSIVESUB Returning +0000000720=+0000000006*+0000000120

+0000000006! = +0000000720

Entering RECURSIVEFUNC Arg=+0000000006

Entering RECURSIVEFUNC Arg=+0000000005

Entering RECURSIVEFUNC Arg=+0000000004

Entering RECURSIVEFUNC Arg=+0000000003

Entering RECURSIVEFUNC Arg=+0000000002

Entering RECURSIVEFUNC Arg=+0000000001

Leaving RECURSIVEFUNC Returning +0000000001

Leaving RECURSIVEFUNC Returning +0000000002

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-10

Leaving RECURSIVEFUNC Returning +0000000006

Leaving RECURSIVEFUNC Returning +0000000024

Leaving RECURSIVEFUNC Returning +0000000120

Leaving RECURSIVEFUNC Returning +0000000720

+0000000006! = +0000000720

See Also…

The IDENTIFICATION DIVISION 3

The CALL Statement 6.4.5

Subprograms: Subroutines vs Functions 7.1

7.8. Combining COBOL and C Programs

Linkage between GNU COBOL and C language programs is possible, but may require a little bit of special coding in one
program or the other in order to meaningfully pass data between them. The issues involved deal predominantly with
three topics, as follows. Each issue is discussed, with upcoming coding samples illustrating specifics as to how those
issues are overcome in actual program code.

7.8.1. GNU COBOL Run-Time Library Requirements

Like most other implementations of the COBOL language, GNU COBOL utilizes a run-time library. When the first
program executed in a given execution sequence is a GNU COBOL program, any run-time library initialization will be
performed by that COBOL code in a manner that is transparent to the C-language programmer. If, however, a C
program is the first to execute, the burden of perform GNU COBOL run-time library initialization falls upon the C
program.

7.8.2. String Allocation Differences Between GNU COBOL and C

Both languages store strings as a fixed-length continuous sequence of characters.

COBOL stores these character sequences up to a specific quantity limit imposed by the PICTURE cause of the data
item. For example:

01 LastName PIC X(15).

There is never an issue of exactly what the length of a string contained in a USAGE DISPLAY data item is – there are
always exactly how ever many characters as were allowed for by the PICTURE clause. In the example above,
“LastName” will always contain exactly fifteen characters; of course, there may be anywhere from 0 to 15 trailing
SPACES as part of the current LastName value.

C actually has no “string” datatype – rather, it stores strings as an array of “char” datatype items where each element
of the array is a single character. Being an array, there is an upper limit to how many characters may be stored in a
given “string”. For example:

char lastName[15]; /* 15 chars: lastName[0] thru lastName[14] */

C provides a robust set of string-manipulation functions to copy strings from one char array to another, search strings
for certain characters, compare one char array to another, concatenate char arrays and so forth. To make these
functions possible, it was necessary to be able to define the logical end of a string. C accomplishes this via the
expectation that all strings (char arrays) will be terminated by a NULL character (x’00’). Of course, no one forces a
programmer to do this, but if [s]he ever expects to use any of the C standard functions to manipulate that string they
had better be doing it.

So, GNU COBOL programmers expecting to pass strings to or receive strings from C programs had best be prepared to
deal with the null-termination issue.

See Also…

Defining Data Items 5.2

7.8.3. Matching C Data Types with GNU COBOL USAGEs

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-11

This is pretty simple, the GNU COBOL and C programmer must just be aware of the following correspondence
between C data types and COBOL USAGE specifications:

Figure 7-1 - C/GNU COBOL Data Type Matches

This COBOL USAGE…

(no PICTURE allowed)

Occupies this
space…

Holds these numeric values… And corresponds to this C
data type…

BINARY-CHAR

BINARY-CHAR UNSIGNED

1 byte 0 to 255 unsigned char

BINARY-CHAR SIGNED 1 byte -128 to +127 signed char

BINARY-SHORT

BINARY-SHORT UNSIGNED

2 bytes 0 to 65535 unsigned

unsigned int

unsigned short

unsigned short int

BINARY-SHORT SIGNED 2 bytes -32768 to +32767 int

short

short int

signed int

signed short

signed short int

BINARY-LONG

BINARY-LONG UNSIGNED

4 bytes 0 to 4294967295 unsigned long

unsigned long int

BINARY-LONG SIGNED

BINARY-INT

4 bytes -2147483648 to +2147483647 long

long int

signed long

signed long int

BINARY-C-LONG SIGNED

4 bytes or 8
bytes

-2147483648 to +2147483647

Or

-9223372036854775808 to
+9223372036854775807

long

(see the description of
USAGE BINARY-C-LONG in
Figure 5-10)

BINARY-DOUBLE

BINARY-DOUBLE UNSIGNED

8 bytes 0 to 18446744073709551615 unsigned long long

unsigned long long int

BINARY-DOUBLE SIGNED

BINARY-LONG-LONG

8 bytes -9223372036854775808 to
+9223372036854775807

long long int

signed long long int

COMPUTATIONAL-1 4 bytes -3.4 x 10
38

 to +3.4 x 10
38

(six decimal digits of precision)

float

COMPUTATIONAL-2 8 bytes -1.7 x 10
308

 to +1.7 x 10
308

(15 decimal digits of precision)

double

N/A (no GNU COBOL
equivalent)

12 bytes -1.19 x 10
4932

 to +1.19 x 10
4932

(18 decimal digits of precision)

long double

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-12

There are other GNU COBOL PICTURE/USAGE combinations that can define the same storage size and value range
combinations, but (with the exception of COMP-1 and COMP-2), these are the ANSI2002 standard specifications for C-
program data compatibility and GNU COBOL programmers should get used to using them when data is being shared
with C programs (they’re good documentation too, highlighting the fact that the data will be “shared” with a C
program).

The minimum values shown for the various SIGNED integer USAGEs are appropriate for a computer system that uses
2s-complement representation for negative signed binary values (such as those CPUs typically found in Windows PCs).
A computer system using 1s-complement representation for negative signed binary values would have minimum
values that are 1 greater (-127 instead of -128, for example).

7.8.4. GNU COBOL Main Programs CALLing C Subprograms

Here are samples of a GNU COBOL program that CALLs a C subprogram.

Figure 7-2 - GNU COBOL CALLing C

(maincob.cbl)

This GNU COBOL MAIN PROGRAM…

(subc.c)

…wants to CALL this C SubProgram

 IDENTIFICATION DIVISION.
 PROGRAM-ID. maincob.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Arg1 PIC X(7).
 01 Arg2 PIC X(7).
 01 Arg3 USAGE BINARY-LONG.
 PROCEDURE DIVISION.
 000-Main.
 DISPLAY 'Starting cobmain'.
 MOVE 123456789 TO Arg3.
 STRING 'Arg1'
 X'00'
 DELIMITED SIZE
 INTO Arg1
 END-STRING.
 STRING 'Arg2'
 X'00'
 DELIMITED SIZE
 INTO Arg2
 END-STRING.
 CALL 'subc' USING BY CONTENT Arg1,
 BY REFERENCE Arg2,
 BY REFERENCE Arg3.
 DISPLAY 'Back'.
 DISPLAY 'Arg1=' Arg1.
 DISPLAY 'Arg2=' Arg2.
 DISPLAY 'Arg3=' Arg3.
 DISPLAY 'Returned value='
 RETURN-CODE.
 STOP RUN.

#include <stdio.h>

int subc(char *arg1,
 char *arg2,
 unsigned long *arg3) {
 char nu1[7]="New1";
 char nu2[7]="New2";
 printf("Starting subc\n");
 printf("Arg1=%s\n",arg1);
 printf("Arg2=%s\n",arg2);
 printf("Arg3=%d\n",*arg3);
 arg1[0]='X';
 arg2[0]='Y';
 *arg3=987654321;
 return 2;
}

The idea is to pass two string and one full-word unsigned arguments to the subprogram, have the subprogram print
them out, change all three and pass a return code of 2 back to the caller . The caller will then re-display the three
arguments (showing changes only to the two BY REFERENCE arguments), display the return code and halt. While
simple, these two programs illustrate the techniques required quite nicely.

Note how the COBOL program ensures that a null end-of-string terminator is present on both string arguments.

Since the C program is planning on making changes to all three arguments, it declares all three as pointers in the
function header and references the third argument as a pointer in the function body.

40

40
 It actually had no choice for the two string (char array) arguments – they must be defined as pointers in the function even

though the function code references them without the leading “*” that normally signifies pointers.

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-13

These programs are compiled and executed as follows. The example assumes a UNIX system with a GNU COBOL build
that uses the native C compiler on that system; the technique works equally well regardless of which C compiler and
which operating system you’re using.

$ cc –c subc.c
$ cobc -x maincob.cbl subc.o
$ maincob
Starting cobmain
Starting subc
Arg1=Arg1
Arg2=Arg2
Arg3=123456789
Back
Arg1=Arg1
Arg2=Yrg2
Arg3=+0987654321
Returned value=+000000002
$

Remember that the null characters are actually in the GNU COBOL “Arg1” and “Arg2” data items. They don’t appear in
the output, but they ARE there. When passing character strings to C programs, it’s probably a good idea to make a
null-terminated copy of the string items and pass those copies to the C program.

7.8.5. C Main Programs CALLing GNU COBOL Subprograms

Now, the roles of the two languages in the previous section will be reversed, having a C main program execute a GNU
COBOL subprogram.

Figure 7-3 - C CALLing GNU COBOL

(mainc.c)
This C MAIN PROGRAM…

(subcob.cbl)
…wants to CALL this GNU COBOL SubProgram

#include <libcob.h>
#include <stdio.h>

int main (int argc, char **argv) {
 int returnCode;
 char arg1[7] = "Arg1";
 char arg2[7] = "Arg2";
 unsigned long arg3 = 123456789;
 printf("Starting mainc...\n");
 cob_init (argc, argv);
 returnCode = subcob(arg1,arg2,&arg3);
 printf("Back\n");
 printf("Arg1=%s\n",arg1);
 printf("Arg2=%s\n",arg2);
 printf("Arg3=%d\n",arg3);
 printf("Returned value=%d\n",returnCode);
 return returnCode;
}

 IDENTIFICATION DIVISION.
 PROGRAM-ID. subcob.
 DATA DIVISION.
 LINKAGE SECTION.
 01 Arg1 PIC X(7).
 01 Arg2 PIC X(7).
 01 Arg3 USAGE BINARY-LONG.
 PROCEDURE DIVISION USING
 BY VALUE Arg1,
 BY REFERENCE Arg2,
 BY REFERENCE Arg3.
 000-Main.
 DISPLAY 'Starting cobsub.cbl'.
 DISPLAY 'Arg1=' Arg1.
 DISPLAY 'Arg2=' Arg2.
 DISPLAY 'Arg3=' Arg3.
 MOVE 'X' TO Arg1 (1:1).
 MOVE 'Y' TO Arg2 (1:1).
 MOVE 987654321 TO Arg3.
 MOVE 2 TO RETURN-CODE.
 GOBACK.

Since the C program is the one that will execute first, before the GNU COBOL subroutine, the burden of initializing the
GNU COBOL run-time environment lies with that C program; it will have to invoke the “cob_init” function, which is
part of the “libcob” library. The two required C statements are shown highlighted.

The arguments to the “cob_init” routine are the argument count and value parameters passed to the main function
when the program began execution. By passing them into the GNU COBOL subprogram, it will be possible for that
GNU COBOL program to retrieve the command line or individual command-line arguments. If that won’t be
necessary, “cob_init(0,NULL);” could be specified instead.

Since the C program wants to allow “arg3” to be changed by the subprogram, it prefixes it with a “&” to force a CALL
BY REFERENCE for that argument. Since “arg1” and “arg2” are strings (char arrays), they are automatically passed by
reference.

GNU COBOL 2.0 Programmers Guide Sub-programming With GNU COBOL

11FEB2012 Version 7-14

Here’s the output of the compilation process as well as the program’s execution. The example assumes a Windows
system with a GNU COBOL build that uses the GNU C compiler on that system; the technique works equally well
regardless of which C compiler and which operating system you’re using.

C:\Users\Gary\Documents\Programs> cobc -S subcob.cbl
C:\Users\Gary\Documents\Programs> gcc mainc.c subcob.s –o mainc.exe -llibcob
C:\Users\Gary\Documents\Programs> mainc.exe
Starting mainc...
Starting cobsub.cbl
Arg1=Arg1
Arg2=Arg2
Arg3=+0123456789
Back
Arg1=Xrg1
Arg2=Yrg2
Arg3=987654321
Returned value=2
C:\Users\Gary\Documents\Programs>

Note that even though we told GNU COBOL that the 1
st

 argument was to be BY VALUE, it was treated as if it were BY
REFERENCE anyway. String (char array) arguments passed from C callers to GNU COBOL subprograms will be
modifiable by the subprogram. It’s best to pass a copy of such data if you want to ensure that the subprogram doesn’t
change it.

The third argument is different, however. Since it’s not an array you have the choice of passing it either BY
REFERENCE

41
 or BY VALUE

42
.

41
 Use “&” with the argument in the C calling program; specify the argument as BY REFERENCE in the COBOL

subprogram

42
 Don’t use “&” with the argument in the C calling program; specify the argument as BY VALUE in the COBOL

subprogram

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-1

8. The GNU COBOL System Interface

8.1. Using the GNU COBOL Compiler (cobc)

8.1.1. Introduction

Program source files should have extensions of “.cob” or “.cbl”.

Program filenames should match exactly the specification of PROGRAM-ID (including case). The reason for this was
discussed in section 3.

Spaces cannot be included in primary entry-point names (section 3) and therefore should not be included in program
filenames.

The GNU COBOL compiler will translate your COBOL program into C source code, compile that C source code into
executable binary form using the “C” compiler specified when GNU COBOL was built and link that executable binary
into either directly executable form, static-linkable form or dynamically-loadable executable form.

The GNU COBOL compiler is named “cobc” (“cobc.exe” on a Windows system).

8.1.2. Syntax and Options

The following describes the syntax and option switches of the cobc command. This information may be displayed by
entering the command “cobc --help”.

Usage: cobc [options] file ...

Options:
 -help Display this message
 -version, -V Display compiler version
 -info, -i Display compiler build information
 -v Display the commands invoked by the compiler
 -x Build an executable program
 -m Build a dynamically loadable module (default)
 -std=<dialect> Warnings/features for a specific dialect :
 cobol2002 Cobol 2002
 cobol85 Cobol 85
 ibm IBM Compatible
 mvs MVS Compatible
 bs2000 BS2000 Compatible
 mf Micro Focus Compatible
 default When not specified
 See config/default.conf and config/*.conf
 -free Use free source format
 -fixed Use fixed source format (default)
 -O, -O2, -Os Enable optimization
 -g Enable C compiler debug / stack check / trace
 -debug Enable all run-time error checking
 -o <file> Place the output into <file>
 -b Combine all input files into a single
 dynamically loadable module
 -E Preprocess only; do not compile or link
 -C Translation only; convert COBOL to C
 -S Compile only; output assembly file
 -c Compile and assemble, but do not link
 -P(=<dir or file>) Generate preprocessed program listing (.lst)
 -Xref Generate cross reference through 'cobxref'
 (V. Coen's 'cobxref' must be in path)
 -I <directory> Add <directory> to copy/include search path
 -L <directory> Add <directory> to library search path
 -l <lib> Link the library <lib>
 -A <options> Add <options> to the C compile phase
 -Q <options> Add <options> to the C link phase
 -D <define> DEFINE <define> to the COBOL compiler

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-2

 -K <entry> Generate CALL to <entry> as static
 -conf=<file> User defined dialect configuration - See -std=
 -list-reserved Display reserved words
 -list-intrinsics Display intrinsic functions
 -list-mnemonics Display mnemonic names
 -list-system Display system routines
 -save-temps(=<dir>) Save intermediate files
 - Default : current directory
 -ext <extension> Add default file extension

 -W Enable ALL warnings
 -Wall Enable all warnings except as noted below
 -Wobsolete Warn if obsolete features are used
 -Warchaic Warn if archaic features are used
 -Wredefinition Warn incompatible redefinition of data items
 -Wconstant Warn inconsistent constant
 -Woverlap Warn overlapping MOVE items
 -Wparentheses Warn lack of parentheses around AND within OR
 -Wstrict-typing Warn type mismatch strictly
 -Wimplicit-define Warn implicitly defined data items
 -Wcorresponding Warn CORRESPONDING with no matching items
 -Wexternal-value Warn EXTERNAL item with VALUE clause
 -Wcall-params Warn non 01/77 items for CALL params
 - NOT set with -Wall
 -Wcolumn-overflow Warn text after column 72, FIXED format
 - NOT set with -Wall
 -Wterminator Warn lack of scope terminator END-XXX
 - NOT set with -Wall
 -Wtruncate Warn possible field truncation
 - NOT set with -Wall
 -Wlinkage Warn dangling LINKAGE items
 - NOT set with -Wall
 -Wunreachable Warn unreachable statements
 - NOT set with -Wall

 -fsign=<value> Define display sign representation
 - ASCII or EBCDIC (Default : machine native)
 -ffold-copy=<value> Fold COPY subject to value
 - UPPER or LOWER (Default : no transformation)
 -ffold-call=<value> Fold PROGRAM-ID, CALL, CANCEL subject to value
 - UPPER or LOWER (Default : no transformation)
 -fdefaultbyte=<value> Initialize fields without VALUE to decimal value
 - 0 to 255 (Default : initialize to picture)
 -fintrinsics=<value> Intrinsics to be used without FUNCTION keyword
 - ALL or intrinsic function name (,name,...)
 -ftrace Generate trace code
 - Executed SECTION/PARAGRAPH
 -ftraceall Generate trace code
 - Executed SECTION/PARAGRAPH/STATEMENTS
 - Turned on by -debug
 -fsyntax-only Syntax error checking only; don't emit any output
 -fdebugging-line Enable debugging lines
 - 'D' in indicator column or floating >>D
 -fsource-location Generate source location code
 - Turned on by -debug/-g/-ftraceall
 -fimplicit-init Automatic initialization of the Cobol runtime system
 -fstack-check PERFORM stack checking
 - Turned on by -debug or -g
 -fsyntax-extension Allow syntax extensions
 - eg. Switch name SW1, etc.
 -fwrite-after Use AFTER 1 for WRITE of LINE SEQUENTIAL
 - Default : BEFORE 1
 -fmfcomment '*' or '/' in column 1 treated as comment
 - FIXED format only
 -fnotrunc Allow numeric field overflow
 - Non-ANSI behaviour

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-3

 -fodoslide Adjust items following OCCURS DEPENDING
 - Requires implicit/explicit relaxed syntax
 -fsingle-quote Use a single quote (apostrophe) for QUOTE
 - Default : double quote
 -frecursive-check Check recursive program call
 -frelax-syntax Relax syntax checking
 - eg. REDEFINES position
 -foptional-file Treat all files as OPTIONAL
 - unless NOT OPTIONAL specified

As discussed in section 2, program compilation groups may consist of multiple programs defined sequentially in a
single source file. By specifying multiple source files on the “cobc” command, it is possible for a single execution of
the “cobc” command to process multiple compilation groups.

8.1.3. Compiling GNU COBOL Programs

8.1.3.1. Compiling Directly-Executable GNU COBOL Programs

The simplest mode of compilation is to generate a single executable file from one or more GNU COBOL source files:

cobc –x prog1.cbl prog2.cbl prog3.cbl

The main program must be the first program found in the “prog1.cbl” file. The remainder of “prog1.cbl” as well as all
of “prog2.cbl” and “prog3.cbl” must be subprograms (subroutines or user-defined functions) or nested subprograms.

This will generate a single executable file (UNIX) or exe file (Windows) which has all COBOL programs contained within
the source files specified on the “cobc” command included in the file. The first program found in the first specified
source file is presumed to be the main program and all other programs found in the remainder of that first source file
as well as in all the remaining source files will be static subroutines and/or user-defined functions. Any subroutines or
user-defined functions that weren’t included in any of the source files will be treated as dynamically loadable
subprograms.

Optionally, the “-o” option may be used to specify the name of the generated executable file. If “-o” is not specified,
otherwise, the filename of the 1

st
 source file named on the command will be used. The appropriate extension for the

generated file (“exe”, on a Windows computer, for example) will be added to the filename that is explicitly or
implicitly used for the output file.

8.1.3.2. Compiling Dynamically-Loadable GNU COBOL Subprograms

Subprograms that are to be dynamically loaded into memory at execution time must be compiled using the “-m”
option on the cobc command, as follows:

cobc –m sprog1.cbl

cobc –m sprog1.cbl sprog2.cbl sprog3.cbl

cobc –m –b sprog1.cbl sprog2.cbl sprog3.cbl

 The first command above generates a single dynamically-loadable module. The second example generates three
dynamically-loadable modules (one for each source file). The third command generates a single dynamically-loadabl;e
module.

 Optionally, when a single output file is being generated, the “-o” option may be used to specify its name (otherwise,
the filename of the 1

st
 source file named on the command will be used). The appropriate extension for the generated

file (“dll”, on a Windows computer, for example) will be added to the filename that is explicitly or implicitly used for
the output file.

It is also possible to generate main programs as dynamically-loadable libraries. Just use the “-m” option (as shown
here) rather than the “-x” option. To execute these main programs, you’ll need to utilize the cobcrun command, as
discussed in section 8.2.2.

8.1.3.3. Compiling Static GNU COBOL Subprograms

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-4

You may compile GNU COBOL subprograms into assembler source code which can then be assembled and linked with
a main program when that main program is compiled. To create such an assembler source file, compile the
subprogram(s) as follows:

cobc –S sprog1.cbl (Note: “-S” is an uppercase-S)

This will create an assembler source file named “sprog1.s”. If you specify multiple input files, they’ll each create their
own “.s” files.

To compile a main program, assemble an assembler source file and static-link it all together:

cobc –x mainprog.cbl sprog1.s

If multiple subprograms are needed, simply add their “.s” files to the command line. Any subprogram entry-points for
which “.s” files were not specified will be CALLed at runtime as dynamically-loadable modules.

Precompiled subroutines intended to be statically linked (usually they end in “.o”) may be automatically located by the
GNU COBOL compiler (cobc) and the loader (ld) by using the LD_LIBRARY_PATH environment variable (section 8.1.4).

8.1.4. Important Compilation-Time Environment Variables

The following chart documents the various environment variables that can play a role in the compilation of GNU
COBOL programs.

Figure 8-1 - Compiler Environment Variables

Environment Variable Use

COB_CC Set to the name of the C compiler you wish GNU COBOL
to use.

USE THIS FEATURE AT YOUR OWN RISK – YOU SHOULD
ALWAYS USE THE C COMPILER YOUR GNU COBOL
BUILD WAS GENERATED FOR

COB_CFLAGS
43

 Set to any switches that you’d like to pass on to the C
compiler from the cobc compiler (in addition to any that
cobc will specify). The default is “-Iprefix/include”,
where “prefix” is the path prefix specified when the
GNU COBOL binaries you are using were created.

COB_CONFIG_DIR Set to the path to the folder where GNU COBOL
“config” files are kept.

COB_COPY_DIR If copybooks your program needs are NOT stored in the
same directory as your program, set this environment
variable to the folder in which the copybooks may be
found (IBM mainframe programmers will recognize this
as “SYSLIB”).

COB_LDADD
41

 Set to any additional linker switches (ld) that can specify
where standard libraries that must be linked with the
program can be found. The default is “” (null).

COB_LDFLAGS
41

 Set to any linker/loader (ld) switches that you’d like to
pass on to the C compiler from the cobc compiler (in
addition to any that cobc will specify). The default is
none.

43
 These switches are intended for use only in very special circumstances by very advanced users; their usage is discouraged. A

future release of GNU COBOL will introduce a better way to pass switched to the C compiler and/or the loader from the cobc
command.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-5

Environment Variable Use

COB_LIBS
41

 Set to any linker switches (ld) that specify where
standard libraries that must be linked with the program
can be found. The default is “-Lprefix/lib -lcob” , where
“prefix” is the path prefix specified when the GNU
COBOL binaries you are using were created.

COBCPY This environment variable provides an additional means
of specifying where copybooks may be found by the
compiler (see also COB_COPY_DIR, above).

LD_LIBRARY_PATH If you are planning on using static-linked subroutine
libraries, set this variable to the path to the directory
containing your libraries.

TMPDIR
TMP
(checked in this order)

Set to a directory/folder appropriate to create
temporary files in. The intermediate working files
created by cobc will be created here (and deleted once
they’re no longer needed).

On a Windows system, the TMP environment variable is
normally set for you when you logon. If you wish to use
a different temporary folder, you may set TMPDIR
yourself and have no fear of disrupting other Windows
software that relies on TMP.

See Also…

Copybooks 1.3.3.3

The COPY Statement 2.1.1

Compiler Switches Reference 8.1.2

GNU COBOL “config” Files 8.1.6

8.1.5. Locating Copybooks at Compilation Time

The GNU COBOL compiler will attempt to locate copybooks by searching for them in the following folders. The search
will occur in the sequence shown below, and will terminate once a copybook is found.

 The folder named as the library-name-1 on the COPY statement.
 The folder in which the program being compiled resides.
 The folder named on the “-I” compiler switch
 Each of the folders named on the COBCPY environment variable (see section Error! Reference source not found.).

A single folder may be named or multiple folders may be specified, separated by a system-appropriate delimiter
character.

44
 When multiple folders are specified, they will be searched in the order they are named on the

environment variable.
 The folder specified on the COB_COPY_DIR environment variable.

As each of the above folders is searched for a copybook - “COPY XXXXXXXX.”, for example – the GNU COBOL compiler
will attempt to locate the copybook file by any of the following names, in the sequence shown:

 XXXXXXXX.CPY
 XXXXXXXX.CBL
 XXXXXXXX.COB
 XXXXXXXX.cpy
 XXXXXXXX.cbl
 XXXXXXXX.cob
 XXXXXXXX

The COPY command is case-sensitive on UNIX systems; “COPY copybookname” and “COPY COPYBOOKNAME” will both
fail to locate the “CopyBookName” copybook on a UNIX system. Windows implementations of GNU COBOL may or

44
 If the GNU COBOL compiler you are using was built to utilize a native Windows environment, use a semicolon (;). If, however,

the GNU COBOL compiler was built for a Unix or Linux environment, or was built for a Windows environment utilizing either
the Cygwin or MinGW Unix “emulators”, use a colon character (:) as the separator.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-6

may not be similarly case sensitive with regard to copybook names, depending upon the Windows version and GNU
COBOL build options – it is safest to simply treat the COPY command as case-sensitive in all environments.

See Also…

Copybooks 1.3.3.3

The COPY Statement 2.1.1

Compiler Switches Reference 8.1.2

Compilation-time Environment Variables 8.1.4

8.1.6. Using Compiler Configuration Files

GNU COBOL uses compiler configuration files to define various options that will control the compilation process.
These configuration files are specified using the “-conf” compilation switch or are found in the folder defined by the
COB_CONFIG_PATH environment variable.

The following is a verbatim listing of the “default” configuration file (the one used if you don’t specify the “-conf”
switch), just to show you the types of settings that may appear:

COBOL compiler configuration -*- sh -*-

Value: any string
name: "GNU COBOL"

Value: int
tab-width: 8
text-column: 72

Value: 'cobol2002', 'mf', 'ibm'

assign-clause: mf

If yes, file names are resolved at run time using environment variables.
For example, given ASSIGN TO "DATAFILE", the actual file name will be
1. the value of environment variable 'DD_DATAFILE' or
2. the value of environment variable 'dd_DATAFILE' or
3. the value of environment variable 'DATAFILE' or
4. the literal "DATAFILE"
If no, the value of the assign clause is the file name.

Value: 'yes', 'no'
filename-mapping: yes

Value: 'yes', 'no'
pretty-display: yes

Value: 'yes', 'no'
auto-initialize: yes

Value: 'yes', 'no'
complex-odo: no

Value: 'yes', 'no'
indirect-redefines: no

Binary byte size - defines the allocated bytes according to PIC
Value: signed unsigned bytes
------ -------- -----
'2-4-8' 1 - 4 2
5 - 9 4
10 - 18 8

'1-2-4-8' 1 - 2 1
3 - 4 2
5 - 9 4
10 - 18 8

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-7

'1--8' 1 - 2 1 - 2 1
3 - 4 3 - 4 2
5 - 6 5 - 7 3
7 - 9 8 - 9 4
10 - 11 10 - 12 5
12 - 14 13 - 14 6
15 - 16 15 - 16 7
17 - 18 17 - 18 8
binary-size: 1-2-4-8

Value: 'yes', 'no'
binary-truncate: yes

Value: 'native', 'big-endian'
binary-byteorder: big-endian

Value: 'yes', 'no'
larger-redefines-ok: no

Value: 'yes', 'no'
relaxed-syntax-check: no

Perform type OSVS - If yes, the exit point of any currently executing perform
is recognized if reached.
Value: 'yes', 'no'
perform-osvs: no

If yes, linkage-section items remain allocated
between invocations.
Value: 'yes', 'no'
sticky-linkage: no

If yes, allow non-matching level numbers
Value: 'yes', 'no'
relax-level-hierarchy: no

not-reserved:
Value: Word to be taken out of the reserved words list
(case independent)

Dialect features
Value: 'ok', 'archaic', 'obsolete', 'skip', 'ignore', 'unconformable'
author-Paragraph obsolete
memory-size-clause: obsolete
multiple-file-tape-clause: obsolete
label-records-clause: obsolete
value-of-clause: obsolete
data-records-clause: obsolete
top-level-occurs-clause: skip
synchronized-clause: ok
goto-statement-without-name: obsolete
stop-literal-Statement obsolete
debugging-line: obsolete
padding-character-clause: obsolete
next-sentence-phrase: archaic
eject-Statement skip
entry-Statement obsolete
move-noninteger-to-alphanumeric: error
odo-without-to: ok

8.2. Running GNU COBOL Programs

8.2.1. Executing Programs Directly

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-8

GNU COBOL programs compiled with the “-x” option will be generated as directly-executable programs. For example,
on a Windows system, the “-x” option will be generated as an “.exe” file.

These native executables are appropriate for execution as non-graphical user interface programs.

On a UNIX system this means the programs may be executed from a command shell such as bash, csh, ksh and so
forth. When a GNU COBOL program runs on a Windows system, it runs within a console window (i.e. “cmd.exe”).

Interactions between the program and the user will take place using the standard input, standard output and standard
error streams. Any SCREEN SECTION I/O performed by the program will take place within the command shell
“window”.

Direct program execution syntax is as follows:

[path]program [arguments]

For example:

/usr/local/printaccount ACCT=6625378

Or…

C:\Users\Me\Documents\Programs\printaccount.exe ACCT=6625378

8.2.2. Using the “cobcrun” Utility

It is possible to generate executable modules for all GNU COBOL programs, not just subroutines, by choosing to use
the “-m” option to specify the compiler output format even for main programs.

Some may prefer to compile their GNU COBOL main programs into these dynamically-loadable modules in the
interests of using the same general compilation command for all programs without having to think “Is it a main
program or a subroutine?”.

Main programs compiled in this manner should be executed as follows:

[path]cobcrun program [arguments]

Do not specify the “.so” or “.dll” extension on the program name. The “program” value must exactly match the
primary entry-point name (section 3) of the main program (including upper- and lower-case letters).

The general usage and syntax of cobcrun is as follows:

Usage: cobcrun PROGRAM [param ...]
or : cobcrun --help (-h)
 Print this help
or : cobcrun --version (-V)
 Print version information
or : cobcrun --info (-i)
 Print build information

For an example of the use of cobcrun:

cd /usr/local
cobcrun printaccount ACCT=6625378

Or…

cd C:\Users\Me\Documents\Programs
cobcrun printaccount.exe ACCT=6625378

Note how the cobcrun command does not allow a path to be specified with the program name –the directory in which
the programs dynamically loadable module exists must either be the current directory or must be defined in the
current PATH.

See Also…

Compiler Switches Reference 8.1.2

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-9

8.2.3. Program Arguments

Regardless of the manner in which a program is executed, any arguments specified to the program may be retrieved
via either of the following,:

 ACCEPT … FROM COMMAND-LINE
 ACCEPT … FROM ARGUMENT-VALUE

 See Also…

The ACCEPT Statement (Command Line) 6.2.1.2

8.2.4. Important Execution-Time Environment Variables

The following chart documents the various environment variables that can play a role in the execution of GNU COBOL
programs.

Figure 8-2 - Run-Time Environment Variables

Environment Variable Use

COB_DISPLAY_WARNINGS If set to a value of “Y”, any run-time warnings (such as
noting the implicit CLOSE of open files when a GOBACK
or STOP RUN is executed) will be displayed. Any other
value for this environment variable (including not
setting the variable at all) will suppress such messages.

COB_LIBRARY_PATH At runtime, GNU COBOL will attempt to locate and load
any application dynamically-loadable libraries from the
PATH and the directory in which the program
executable was found. If these library files could be
somewhere else, specify the directory path using this
variable.

COB_PRE_LOAD If set to any non-null value, this variable will cause all
dynamically-loadable libraries to be loaded when the
program begins execution (rather than searching for
and loading the module upon first use).

COB_SET_DEBUG If a USE FOR DEBUGGING section is included in
DECLARATIVES, the code within it will be disabled
unless this environment variable is set to a value of “Y”,
“y” or “1”.

COB_SET_TRACE If the “–ftrace” or “–ftraceall” options were used when
the program was compiled, setting this environment
variable to a value of “Y” will activate the trace at the
point the program begins execution. Setting this
environment variable to any other value (or never
setting it to ANY value) will disable tracing. See the
READY TRACE and RESET TRACE statements for
additional ways to control tracing.

COB_SCREEN_ESC If set to any non-blank value, this variable allows the
ACCEPT verb to detect the Esc key. See Figure 6-23 for
additional information.

COB_SCREEN_EXCEPTIONS Setting this variable to any non-blank value will allow
the ACCEPT verb to detect the Esc, PgUp and PgDn
keys. See Figure 6-23 for additional information.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-10

Environment Variable Use

COB_SORT_MEMORY The value of this variable (an integer) will be used to
define how much memory will be allocated for use in
sorting. If the value is 1048576 or greater, that value
will be used “as is” as the amount of memory (in bytes)
to allocate. If the value is less than 1048576. The
default sort memory amount is 128 MB.

COB_SWITCH_n (n=0 to 15); These environment variables correspond to
SWITCH-0 through SWITCH-15, defined in the SPECIAL-
NAMES paragraph. Setting them to “ON” will activate
them; any other value turns them off.

COB_SYNC If set to a value of upper- or lowercase “p”, this variable
will force a file commit every time a file is written to
(ensuring that data is immediately written to the file
rather than retained in memory until a future commit
occurs). This will slow-down update access to files, but
will provide for better integrity in the event of a
program failure.

COB_TRACE_FILE If set to a value, this environment variable specifies the
file to which all –ftrace and –ftraceall output will be
written.

If this is NOT set to a value, all –ftrace and –ftraceall
output will be written to STDERR, where it may be
piped via a “2> filename” on the command that
executes the program.

DB_HOME If your GNU COBOL build uses the Berkeley Database
(BDB) package, use this environment variable to specify
the folder in which the lock management files to be
associated with all non-SORT files opened by the
program will be stored

45
. Having this variable defined

will activate record locking features on the READ,
REWRITE and WRITE statements

46
.

PATH The GNU COBOL “bin” directory should be defined in
the PATH.

TMPDIR

TMP

TEMP

(checked in this order)

Set to a directory/folder appropriate to create
temporary files in. This will be used by SORT and
MERGE to create temporary work files. You may also
use this folder for any temporary files your application
may require.

Good form dictates that – if your application DOES
create temporary working files – it should clean-up
after itself.

47
.

See Also…

45
 ORGANIZATION INDEXED files will also have their data file allocated in the DB_HOME folder, if DB_HOME exists.

46
 Even with DB_HOME, locking will not work with ORGANIZATION SEQUENTIAL (either type) or ORGANIZAION

RELATIVE files with GNU COBOL builds created for Windows/MinGW. ORGANIZATION INDEXED locks will work
with Windows/MinGW + BDB and all locks will work for all file organizations with UNIX GNU COBOL builds.

47
 Take a look at the C$DELETE and CBL_DELETE_FILE built-in subroutines.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-11

The SPECIAL-NAMES Paragraph 4.1.4

Using DECLARATIVES 6.1.4

The ACCEPT Statement (Screen Data) 6.4.1.4

The CLOSE Statement 6.4.7

The GOBACK Statement 6.2.19

The MERGE Statement 6.4.25

The READ Statement 6.4.31

The READY TRACE Statement 6.2.32

The RESET TRACE Statement 6.4.34

The REWRITE Statement 6.4.36

The SORT Statement (File Sort) 6.4.40.1

The STOP RUN Statement 6.4.42

The WRITE Statement 6.4.50

Compiler Switches Reference 8.1.2

8.3. Built-In System Subroutines

8.3.1. “Call by Name” Routines

There are a number of built-in system subroutines included with GNU COBOL. Generally, these routines are intended
to match those available in Micro Focus COBOL (CBL_...) or ACUCOBOL (C$...).

These routines, all executed via their UPPERCASE NAMES, are capable of performing the following Functions

 Changing the current directory

 Copying files

 Creating a directory

 Creating, Opening, Closing, Reading and Writing byte-stream files

 Deleting directories (folders)

 Deleting files

 Determining how many arguments were passed to a subroutine

 Getting file information (size and last-modification date/time)

 Getting the length (in bytes) of an argument passed to a subroutine

 Justifying a field left-, right- or center-aligned

 Moving files (a destructive “copy”)

 Putting the program ‘to sleep’, specifying the sleep time in seconds

 Putting the program ‘to sleep’, specifying the sleep time in nanoseconds; CAVEAT: although you’ll express the
time in nanoseconds, Windows systems will only be able to sleep at a millisecond granularity

 Retrieving information about the currently-executing program

 Submitting a command to the shell environment appropriate for the version of GNU COBOL you are using for
execution

The following table describes the various built-in subroutines. ALL SUBROUTINE ARGUMENTS ARE MANDATORY
EXCEPT WHERE EXPLICITLY NOTED TO THE CONTRARY. Any subroutine returning a value to RETURN-CODE could
utilize the RETURNING/GIVING clause on the CALL to return the result back to the full-word binary COMP-5 data item
of your choice.

See Also…

The CALL Statement 6.4.5

8.3.1.1. CALL “C$CALLEDBY” USING prog-name-area

This routine returns the name of the program that CALLed the currently-executing program. The program name will
be returned, left-justified and SPACE filled, in the specified prog-name-area argument, which should be a PIC X

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-12

elementary item or a group item. If prog-name-area is too small to receive the entire program name, the program
name value will be truncated to fit the size of the argument.

The RETURN-CODE register will be set to one of the following values:

-1 An error occurred. The prog-name-area contents will be unchanged.

0 The program CALLing “C$CALLEDBY” was not called by any other program (in other words, it is a main program,).
The prog-name-area contents will be set entirely to SPACES.

1 The program CALLing “C$CALLEDBY” was indeed called by another program, and that program’s name has been
saved in prog-name-area.

8.3.1.2. CALL “C$CHDIR” USING directory-path, result

This routine makes directory-path (an alphanumeric literal or identifier) the current directory.

The return code of the operation is returned both in the result argument (any non-edited numeric identifier) as well as
in the RETURN-CODE special register. The return code of the operation will be either 0=Success or 128=failure.

The directory change remains in effect until the program terminates (in which the original current directory at the
time the program was restarted will be automatically restored) or until another C$CHDIR is executed.

8.3.1.3. CALL “C$COPY” USING src-file-path, dest-file-path, 0

Use this subroutine to copy file src-file-path to dest-file-path as if it were done via the “CP” (Unix) or “COPY”
(Windows) command.

Both file path arguments may be alphanumeric literals or identifiers.

The third argument is required, but is unused.

If the attempt to copy the file fails (for example, it or the destination directory doesn't exist), RETURN-CODE will be set
to 128; on successful completion it will be set to 0.

8.3.1.4. CALL “C$DELETE” USING file-path, 0

This routine deletes the file specified by the file-path argument (an alphanumeric literal or identifier) just as if that
were done using the “RM” (Unix) or “ERASE” (Windows) command.

The second argument is required, but is unused.

If the attempt to delete the file fails (for example, it doesn't exist), RETURN-CODE will be set to 128; on successful
completion it will be set to 0.

8.3.1.5. CALL “C$FILEINFO” USING file-path, file-info

With this routine you may retrieve the size of the file
48

 specified as the file-path argument (an alphanumeric literal or
identifier) and the date/time that file was last modified. The information is returned to the file-info argument, which
is defined as the following 16-byte area:

 01 File-Info.
 05 File-Size-In-Bytes PIC 9(18) COMP.
 05 Mod-YYYYMMDD PIC 9(8) COMP. *> Modification Date
 05 Mod-HHMMSS00 PIC 9(8) COMP. *> Modification Time

48
 File size information may not be available in the particular GNU COBOL build / Operating System combination you are using

and may therefore always be returned as zero.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-13

The last two decimal digits in the modification time will always be 0.

If the subroutine is successful, a value of 0 will be returned in RETURN-CODE. Failure to retrieve the needed statistics
on the file will cause a RETURN-CODE value of 35 to be passed back. Supplying less than two arguments will generate
a 128 RETURN-CODE value.

8.3.1.6. CALL “C$GETPID”

Use the C$GETPID to return the PID of the executing GNU COBOL program. The PID value is returned into the
RETURN-CODE register.

As you can see, there are no arguments to this routine.

8.3.1.7. CALL “C$JUSTIFY” USING data-item, “justification-type”

Use C$JUSTIFY to left, right or center-justify an alphabetic, alphanumeric or numeric edited data-item. The
justification-type argument indicates the type of the justification to be performed. The value of that argument will be
interpreted as follows:

absent Treated the same as if it were "R"
Cxxx... If it begins with a capital "C", the value will be centered
Rxxx... If it begins with a capital "R", the value will be right-justified, space-filled to the left
Lxxx... If it begins with a capital "L", the value will be left-justified, space-filled to the right
anything else Treated as if it were "R"

8.3.1.8. CALL “C$MAKEDIR” USING dir-path

With this routine you may create a new directory – the name of which is supplied as the dir-path argument (an
alphanumeric literal or identifier).

Only the lowest-level directory (last) in the specified path can be created – all others must already exist. This
subroutine will NOT behave as a “mkdir –p” (Unix) or “mkdir /p” (Windows).

RETURN-CODE will be set to the return code of the operation; the value will be either 0=Success or 128=failure.

8.3.1.9. CALL “C$NARG” USING arg-count-result

C$NARG returns the number of arguments passed to a subroutine that calls C$NARG back to the numeric field arg-
count-result. When called from within a user-defined function, a value of one (1) is returned if any arguments were
passed to the function or a zero (0) otherwise.

When CALLed from a main program, the returned value will always be 0.

8.3.1.10. CALL “C$PARAMSIZE” USING argument-number

This subroutine returns the size (in bytes) of the subroutine argument supplied using the argument-number parameter
(a numeric literal or data item).

The size is returned in the RETURN-CODE special register.

If the specified argument does not exist, or an invalid argument number is specified, a value of 0 is returned.

8.3.1.11. CALL “C$PRINTABLE” USING data-item [, char]

The C$PRINTABLE subroutine converts the contents of the data-item specified as the first argument to printable
characters. Those characters that are deemed printable (as defined by the characterset used by data-item) will
remain unchanged, while those that are NOT printable will be converted to the character specified as the second
argument. If no second argument is provided, a period (“.”) will be used.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-14

8.3.1.12. CALL “C$SLEEP” USING seconds-to-sleep

C$SLEEP puts the program to sleep for the specified number of seconds. The seconds-to-sleep argument may be a
numeric literal or data item.

Sleep times less than 1 will be interpreted as 0, which immediately returns without any sleep delay.

8.3.1.13. CALL “C$TOLOWER” USING data-item, BY VALUE convert-length

This routine will converts convert-length (a numeric literal or data item) leading characters of data-item (an
alphanumeric identifier) to lower-case.

The convert-length argument must be specified BY VALUE. It specifies how many (leading) characters in data-item will
be converted – any characters after that will remain unchanged.

If convert-length is negative or zero, no conversion will be performed.

8.3.1.14. CALL “C$TOUPPER” USING data-item, BY VALUE convert-length

Use the C$TOUPPER subroutine to change the convert-length (a numeric literal or data item) leading characters of
data-item (an alphanumeric identifier) to upper-case.

The convert-length argument must be specified BY VALUE. It specifies how many (leading) characters in data-item will
be converted – any characters after that will remain unchanged.

If convert-length is negative or zero, no conversion will be performed.

8.3.1.15. CALL “CBL_AND” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit logical AND operation between the left-most 8*byte-length corresponding bits of
item-1 and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “AND” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 0

0 1 0

1 0 0

1 1 1

8.3.1.16. CALL “CBL_CHANGE_DIR” USING directory-path

This routine makes directory-path (an alphanumeric literal or identifier) the current directory.

The directory change remains in effect until the program terminates (in which the original current directory at the
time the program was restarted will be automatically restored) or until another CBL_CHANGE_DIR (or C$CHDIR) is
executed.

The return code of the operation is returned in the RETURN-CODE special register. The return code of the operation
will be either 0=Success or 128=failure.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-15

8.3.1.17. CALL “CBL_CHECK_FILE_EXIST” USING file-path, file-info

With this routine you may retrieve the size of the file
49

 specified as the file-path argument (an alphanumeric literal or
identifier) and the date/time that file was last modified. The information is returned to the file-info argument, which
is defined as the following 16-byte area:

 01 Argument-2.
 05 File-Size-In-Bytes PIC 9(18) COMP.
 05 Mod-DD PIC 9(2) COMP. *> Modification Time
 05 Mod-MO PIC 9(2) COMP.
 05 Mod-YYYY PIC 9(4) COMP. *> Modification Date
 05 Mod-HH PIC 9(2) COMP.
 05 Mod-MM PIC 9(2) COMP.
 05 Mod-SS PIC 9(2) COMP.
 05 FILLER PIC 9(2) COMP. *> This will always be 00

If the subroutine is successful, a value of 0 will be returned in RETURN-CODE. Failure to retrieve the needed statistics
on the file will cause a RETURN-CODE value of 35 to be passed back. Supplying less than two arguments will generate
a 128 RETURN-CODE value.

8.3.1.18. CALL “CBL_CLOSE_FILE” USING file-handle

The CBL_CLOSE_FILE subroutine closes a bytestream file previously opened by either the CBL_OPEN_FILE or
CBL_CREATE_FILE subroutines.

If the file defined by the file-handle argument (a PIC X(4) USAGE COMP-X data item) was opened for output, an implicit
CBL_FLUSH_FILE will be performed before the file is closed.

If the subroutine is successful, a value of 0 will be returned in RETURN-CODE. Failure will cause a RETURN-CODE value
of -1 to be passed back.

8.3.1.19. CALL “CBL_COPY_FILE” USING src-file-path, dest-file-path

Use this subroutine to copy file src-file-path to dest-file-path as if it were done via the “CP” (Unix) or “COPY”
(Windows) command.

Both file path arguments may be alphanumeric literals or identifiers.

If the attempt to copy the file fails (for example, it or the destination directory doesn't exist), RETURN-CODE will be set
to 128; on successful completion it will be set to 0.

8.3.1.20. CALL “CBL_CREATE_DIR” USING dir-path

With this routine you may create a new directory – the name of which is supplied as the dir-path argument (an
alphanumeric literal or identifier).

Only the lowest-level directory (last) in the specified path can be created – all others must already exist. This
subroutine will NOT behave as a “mkdir –p” (Unix) or “mkdir /p” (Windows).

RETURN-CODE will be set to the return code of the operation; the value will be either 0=Success or 128=failure.

8.3.1.21. CALL “CBL_CREATE_FILE” USING file-path, 2, 0, 0, file-handle

The CBL_CREATE_FILE subroutine creates the new file specified using the file-path argument and opens it for output
as a byte-stream file usable by CBL_WRITE_FILE..

49
 File size information may not be available in the particular GNU COBOL build / Operating System combination you are using

and may therefore always be returned as zero.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-16

Arguments 2, 3 and 4 should be coded as the constant values shown.
50

A file handle (PIC X(4) USAGE COMP-X) will be returned, for any subsequent CBL_WRITE_FILE or CBL_CLOSE_FILE calls.

The success or failure of the subroutine will be reported back in the RETURN-CODE register, with a RETURN-CODE
value of -1 indicating an invalid argument and a value of 0 indicating success.

8.3.1.22. CALL “CBL_DELETE_DIR” USING dir-path

Delete an empty directory via CBL_DELETE_DIR.

The only argument – dir-path (an alphanumeric literal or identifier) – is the name of the directory to be deleted.

Only the lowest-level directory (last) in the specified path will be deleted, and that directory must be empty to be
deleted.

RETURN-CODE will be set to the return code of the operation; the value will be either 0=Success or 128=failure.

8.3.1.23. CALL “CBL_DELETE_FILE” USING file-path

This routine deletes the file specified by the file-path argument (an alphanumeric literal or identifier) just as if that
were done using the “RM” (Unix) or “ERASE” (Windows) command.

If the attempt to delete the file fails (for example, it doesn't exist), RETURN-CODE will be set to 128; on successful
completion it will be set to 0.

8.3.1.24. CALL “CBL_ERROR_PROC” USING function, program-pointer

This routine registers a general error-handling routine.

The function argument must be a numeric literal or a 32-bit binary COMP-5 data item (USAGE BINARY-LONG, for
example) with a value of 0 or 1. A value of 0 means that you will be registering (“installing”) an error procedure while
a value of 1 indicates you’re deregistering (“uninstalling”) a previously-installed error procedure.

The program-pointer must be a USAGE PROGRAM-POINTER data item containing the address of your error procedure.
This item should be given a value using the SET program-pointer statement. If the error procedure is written in GNU
COBOL, it must be a subroutine, not a user-defined function.

A success (0) or failure (non-0) result will be passed back in the RETURN-CODE register.

A custom error procedure, will trigger when a runtime error condition is encountered. An error procedure may be
registered by a main program or a subprogram, but regardless of from where it was registered, it applies to the overall
program compilation group and will trigger when a runtime error occurs anywhere in the executable program. If the
error procedure was defined by a subprogram, that program must be loaded at the time the error procedure is
executed.

The code within the handler will be executed and – once the handler issues a return (C) or an EXIT PROGRAM or
GOBACK (GNU COBOL), the system-standard error handling routine will be executed.

Only one user-defined error procedure may be in effect at any time.

The following is a sample GNU COBOL program that registers an error procedure. The output of that program is
shown as well - as you can see, the error handler’s messages appear followed by the standard GNU COBOL message.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DemoERRPROC.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Err-Proc-Address USAGE PROCEDURE-POINTER.
 PROCEDURE DIVISION.

50
 CBL_CREATE_FILE is actually a special-case of the CBL_OPEN_FILE routine - see that routine for a description of the meanings

of arguments 2, 3 and 4.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-17

 S1.
 DISPLAY 'Program is starting'
 SET Err-Proc-Address TO ENTRY 'ErrProc'
 CALL 'CBL_ERROR_PROC' USING 0, Err-Proc-Address
 CALL 'Tilt' *> THIS DOESN'T EXIST!!!!
 DISPLAY 'Program is stopping'
 STOP RUN
 .
 END PROGRAM DemoERRPROC.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. ErrProc.
 PROCEDURE DIVISION.
 000-Main.
 DISPLAY 'Error: ' EXCEPTION-LOCATION
 DISPLAY ' ' EXCEPTION-STATEMENT
 DISPLAY ' ' EXCEPTION-FILE
 DISPLAY ' ' EXCEPTION-STATUS
 DISPLAY '*** Returning to Standard Error Routine ***'
 EXIT PROGRAM
 .
 END PROGRAM ErrProc.

When executed, this sample program generates the following console output:

>demoerrproc
Program is starting
Error: DemoERRPROC; S1; 13
 CALL
 00
 EC-PROGRAM-NOT-FOUND
*** Returning to Standard Error Routine ***
DEMOERRPROC.cbl: 28: libcob: Cannot find module 'Tilt'

8.3.1.25. CALL “CBL_EXIT_PROC” USING function, program-pointer

This routine registers a general exit-handling routine.

The function argument must be a numeric literal or a 32-bit binary COMP-5 data item (USAGE BINARY-LONG, for
example) with a value of 0 or 1. A value of 0 means that you will be registering (“installing”) an exit procedure while a
value of 1 indicates you’re deregistering (“uninstalling”) a previously-installed exit procedure.

The program-pointer must be a USAGE PROGRAM-POINTER data item containing the address of your exit procedure.

A success (0) or failure (non-0) result will be passed back in the RETURN-CODE register.

An exit procedure will trigger when a “STOP RUN” or its equivalent (i.e. “GOBACK” executed in a main program) is
executed. The exit procedure code will be executed and – once it issues an EXIT PROGRAM or a GOBACK, the system-
standard program termination routine will be executed.

Only one user-defined exit procedure may be in effect at any time.

An exit procedure may be defined by a main program or a subprogram, but regardless of from where it was registered,
it applies to the overall program compilation group and will trigger when a STOP RUN is executed anywhere in the
executable program. If the exit procedure was defined by a subprogram, that program must be loaded at the time the
exit procedure is executed.

An exit procedure should terminate using EXIT PROGRAM or a GOBACK.

The following is a sample GNU COBOL program that
registers an exit procedure. The output of that
program is shown as well.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. demoexitproc.

Executing a STOP RUN...
*** STOP RUN has been executed ***
*** 2009/08/28 10:01:29 ***

Program output…

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-18

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 78 Exit-Proc-Install VALUE 0.
 01 Current-Date PIC X(8).
 01 Current-Time PIC X(8).
 01 Exit-Proc-Address USAGE PROCEDURE-POINTER.
 01 Formatted-Date PIC XXXX/XX/XX.
 01 Formatted-Time PIC XX/XX/XX.
 PROCEDURE DIVISION.
 000-Register-Exit-Proc.
 SET Exit-Proc-Address TO ENTRY "999-Exit"
 CALL "CBL_EXIT_PROC"
 USING Exit-Proc-Install, Exit-Proc-Address
 END-CALL
 IF RETURN-CODE NOT = 0
 DISPLAY 'Error: Could not register Exit Procedure'
 END-IF
 .
 099-Now-Test-Exit-Proc.
 DISPLAY
 'Executing a STOP RUN...'
 END-DISPLAY
 GOBACK
 .
 999-Exit-Proc.
 ENTRY "999-Exit"
 DISPLAY
 '*** STOP RUN has been executed ***'
 END-DISPLAY
 ACCEPT
 Current-Date FROM DATE YYYYMMDD
 END-ACCEPT
 ACCEPT
 Current-Time FROM TIME
 END-ACCEPT
 MOVE Current-Date TO Formatted-Date
 MOVE Current-Time TO Formatted-Time
 INSPECT Formatted-Time REPLACING ALL '/' BY ':'
 DISPLAY
 '*** ' Formatted-Date ' ' Formatted-Time ' ***'
 END-DISPLAY
 GOBACK
 .

8.3.1.26. CALL “CBL_EQ” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit test for equality between the left-most 8*byte-length corresponding bits of item-
1 and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “EQ” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 1

0 1 0

1 0 0

1 1 1

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-19

8.3.1.27. CALL “CBL_FLUSH_FILE” USING file-handle

In Micro Focus COBOL, CALLing this subroutine flushes any as-yet unwritten memory buffers for the (output) file
whose file-handle is specified as the argument to disk.

This routine is non-functional in GNU COBOL. It exists only to provide compatibility for applications that may have
been developed for Micro Focus COBOL.

8.3.1.28. CALL “CBL_GET_CURRENT_DIR” USING BY VALUE 0, BY VALUE
length, BY REFERENCE buffer

This retrieves the fully-qualified pathname of the current directory, saving up to length characters of that name into
the specified buffer.

The first argument is unused, but must be specified. It must be specified BY VALUE.

The length argument must be specified BY VALUE.

The buffer argument must be specified BY REFERENCE.

The value specified for the length argument (a numeric literal or data item) should not exceed the actual length of the
buffer argument.

If the value specified for the length argument is LESS THAN the actual length of the buffer argument, the current
directory path will be left-justified and space filled within the first length bytes of buffer – any bytes in buffer after
that point will be unchanged.

If the routine is successful, a value of 0 will be returned to the RETURN-CODE register. If the routine failed because of
a problem with an argument (such as a negative or 0 length), a RETURN-CODE value of 128 will result. Finally, if the 1

st

argument value is anything but zero, the routine will fail with a 129 RETURN-CODE.

8.3.1.29. CALL “CBL_GET_CSR_POS” USING cursor-locn-buffer

This subroutine will retrieve the current cursor location on the screen, returning a 2-byte value into the supplied
cursor-locn-buffer. The first byte of cursor-locn-buffer will receive the current line (row) location while the second
receives the current column location.

The returned location data will be in exact binary (i.e. USAGE COMPUTATIONAL) form, and will be based upon starting
values of 0, meaning that if the cursor is located at line 15, column 12 at the time this routine is called, a value of
(14,11) will be returned.

The following is a typical cursor-locn-buffer definition:

01 CURSOR-LOCN-BUFFER.

 05 CURSOR-LINE USAGE BINARY-CHAR.

 05 CURSOR-COLUMN USAGE BINARY-CHAR.

Values of 1 (Line) and 1 (column) will be returned if GNU COBOL was not generated to include screen I/O.

8.3.1.30. CALL “CBL_GET_SCR_SIZE” USING no-of-lines, no-of-cols

Use this subroutine to retrieve the current console screen size. When the system is running in a windowed
environment, this will be the sizing of the console window in which the program is executing. When the system is not
running a windowing environment, the physical console screen attributes will be returned. In environments such as a
Windows console window, where the logical size of the window may far exceed that of the physical console window,
the size returned will be that of the physical console window. Two one-byte values will be returned – the first will be
the current number of lines (rows) while the second will be the number of columns.

The returned size data will be in exact binary (i.e. USAGE COMPUTATIONAL) form.

The following are typical no-of-lines and no-of-columns Definitions

01 NO-OF-LINES USAGE BINARY-CHAR.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-20

01 NO-OF-COLUMNS USAGE BINARY-CHAR.

GNU COBOL run-time screen management must have been initialized prior to CALLing this routine in order to receive
meaningful values. This means that a screen-data DISPLAY and/or a screen-data ACCEPT must have been executed
prior to the CALL.

Zero values will be returned if the screen has not been initialized and values of 24 (lines) and 80 (columns) will be
returned if GNU COBOL was not generated to include screen I/O.. Compare this result with that of a screen-
information ACCEPT.

See Also…

The ACCEPT Statement (Screen Data) 6.4.1.4

The ACCEPT Statement (Screen Info): 6.4.1.6

The DISPLAY Statement (Screen Data) 6.4.12.4

8.3.1.31. CALL “CBL_IMP” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit “implies” test between the left-most 8*byte-length corresponding bits of item-1
and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “IMP” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 1

0 1 1

1 0 0

1 1 1

8.3.1.32. CALL “CBL_NIMP” USING item-1, item-2, BY VALUE byte-length

This subroutine performs the negation of a bit-by-bit “implies” test between the left-most 8*byte-length
corresponding bits of item-1 and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “NIMP” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 0

0 1 0

1 0 1

1 1 0

8.3.1.33. CALL “CBL_NOR” USING item-1, item-2, BY VALUE byte-length

This subroutine performs the negation of a bit-by-bit “OR” test between the left-most 8*byte-length corresponding
bits of item-1 and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “NOR” process. Arg #1 Arg #2 New

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-21

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

bit bit Arg #2
bit

0 0 1

0 1 0

1 0 0

1 1 0

8.3.1.34. CALL “CBL_NOT” USING item-1, BY VALUE byte-length

This subroutine “flips” the left-most 8*byte-length bits of item-2, storing the resulting bit string into item-2.

Item-2 must be a data item. The length of item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “NOT” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Old
Arg #2

bit

New
Arg #2

bit

0 1

1 0

8.3.1.35. CALL “CBL_OC_NANOSLEEP” USING nanoseconds-to-sleep

CB_OC_NANOSLEEP puts the program to sleep for the specified number of nanoseconds.

The nanoseconds-to-sleep argument is a numeric literal or data item.

There are one BILLION nanoseconds in a second, so if you wanted to put the program to sleep for 1/4 second you'd
use a nanoseconds-to-sleep value of 250000000.

8.3.1.36. CALL “CBL_OPEN_FILE” file-path, access-mode, 0, 0, handle

.This routine opens an existing file for use as a byte-stream file usable by CBL_WRITE_FILE or CBL_READ_FILE.

The file-path argument is an alphanumeric literal or data-item.

The access-mode argument is a numeric literal or data item with a PIC X USAGE COMP-X (or USAGE BINARY-CHAR)
definition; it specifies how you wish to use the file, as follows:

1 = input (read-only)

2 = output (write-only)

3 = input and/or output

The third and fourth arguments would specify a locking mode and device specification, respectively, but they’re not
implemented in GNU COBOL (currently, at least) – just specify each as 0.

The final argument – handle - is a PIC X(4) USAGE COMP-X item that will receive the handle to the file. That handle is
used on all other byte-stream functions to reference this specific file.

A RETURN-CODE value of -1 indicates an invalid argument, while a value of 0 indicates success. A value of 35 means
the file does not exist.

8.3.1.37. CALL “CBL_OR” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit “OR” test between the left-most 8*byte-length corresponding bits of item-1 and
item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.
Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-22

The truth table shown below documents the “OR” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 0

0 1 1

1 0 1

1 1 1

8.3.1.38. CALL “CBL_READ_FILE” USING handle, offset, nbytes, flag, buffer

This routine reads nbytes of data starting at byte number offset from the byte-stream file defined by handle into the
specified buffer.

The handle argument (PIC X(4) USAGE COMP-X) must have been populated by a prior call to CBL_OPEN_FILE.

The offset argument (PIC X(8) USAGE COMP-X) defines the location in the file of the first byte to be read. The first
byte of a file is byte offset 0.

The nbytes argument (PIC X(4) USAGE COMP-X) specifies how many bytes (maximum) will be read.

If the flags argument is specified as 128, the size of the file (in bytes) will be returned into the file offset argument
(argument 2) upon completion.

51
 The only other valid value for flags is 0. This argument may be specified either as a

numeric literal or as a PIC X USAGE COMP-X data item.

Upon completion, RETURN-CODE will be set to 0 if the read was successful or to 10 if an “end-of-file” condition
occurred. If RETURN-CODE has a value of -1, a problem was identified with the subroutine arguments.

8.3.1.39. CALL “CBL_RENAME_FILE” USING old-file-path, new-file-path

You may use this subroutine to rename a file.

The file specified by old-file-path will be “renamed” to the name specified as new-file-path. Each argument may be an
alphanumeric literal or data item.

Despite what the name of this routine might make you believe, this routine is more than just a simple “rename” – it
will actually move the file supplied as the 1

st
 argument to the file specified as the 2

nd
 argument. Think of it as a two-

step sequence, first copying the old-file-path to the new-file-path and then a second step where the old-file-path is
deleted.

If the attempt to move the file fails (for example, it doesn't exist), RETURN-CODE will be set to 128; on successful
completion it will be set to 0.

8.3.1.40. CALL “CBL_TOLOWER” USING data-item, BY VALUE convert-length

This routine will converts convert-length (a numeric literal or data item) leading characters of data-item (an
alphanumeric identifier) to lower-case.

The convert-length argument must be specified BY VALUE. It specifies how many (leading) characters in data-item will
be converted – any characters after that will remain unchanged.

If convert-length is negative or zero, no conversion will be performed.

8.3.1.41. CALL “CBL_TOUPPER” USING data-item, BY VALUE convert-length

51
 Not all operating system/GNU COBOL environments may be able to retrieve file sizes – in such cases, a value of zero will be

returned.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-23

Use C$TOUPPER to change the convert-length (a numeric literal or data item) leading characters of data-item (an
alphanumeric identifier) to upper-case.

The convert-length argument must be specified BY VALUE. It specifies how many (leading) characters in data-item will
be converted – any characters after that will remain unchanged.

If convert-length is negative or zero, no conversion will be performed.

8.3.1.42. CALL “CBL_WRITE_FILE” USING handle, offset, nbytes, 0, buffer

This routine writes nbytes of data from the specified buffer to the byte-stream file defined by handle starting at byte
number offset.

The handle argument (PIC X(4) USAGE COMP-X) must have been populated by a prior call to CBL_OPEN_FILE.

The offset argument (PIC X(8) USAGE COMP-X) defines the location in the file of the first byte to be written to. The
first byte of a file is byte offset 0.

The nbytes argument (PIC X(4) USAGE COMP-X) specifies how many bytes (maximum) will be written.

The only allowable value or the flags argument is 0. This argument may be specified either as a numeric literal or as a
PIC X USAGE COMP-X data item.

Upon completion, RETURN-CODE will be set to 0 if the write was successful or to 30 if an I/O error condition occurred.
If RETURN-CODE has a value of -1, a problem was identified with the subroutine arguments.

8.3.1.43. CALL “CBL_XOR” USING item-1, item-2, BY VALUE byte-length

This subroutine performs a bit-by-bit exclusive “OR” test between the left-most 8*byte-length corresponding bits of
item-1 and item-2, storing the resulting bit string into item-2.

Item-1 may be an alphanumeric literal or a data item. Item-2 must be a data item. The length of both item-1 and
item-2 must be at least 8*byte-length.

Byte-length may be a numeric literal or data item, and must be specified using BY VALUE.

The truth table shown to the right documents the “XOR” process.

Any bits in item-2 after the 8*byte-length point will be unaffected.

A result of zero will be passed back in the RETURN-CODE register.

Arg #1
bit

Arg #2
bit

New
Arg #2

bit

0 0 0

0 1 1

1 0 1

1 1 0

8.3.1.44. CALL “SYSTEM” USING command

This subroutine submits the specified command (an alphanumeric literal or data item) to a command shell.

A shell will be opened subordinate to the GNU COBOL program issuing the CALL to SYSTEM.

Output from the command (if any) will appear in the command window in which the GNU COBOL program was
executed.

On a Unix system, the shell environment will be established using the default shell program. This is also true when
using a GNU COBOL build created with and for the Cygwin Unix emulator.

With native Windows Windows/MinGW builds, the shell environment will be the Windows console window command
processor (usually “cmd.exe”) appropriate for the version of Windows you’re using.

To trap output from the executed command and process it within the GNU COBOL program, use a pipe (>) to send the
command output to a temporary file which you then READ from within the program once control returns.

8.3.2. “Call by Number” Subroutines

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-24

Early versions of Micro Focus COBOL allowed programmers to access various runtime library routines by using a single
two-digit hexadecimal number as the entry=point name. These were known as call-by-number routines. Over time,
Micro Focus COBOL evolved, replacing most of the call-by-number routines with ones accessible using a more
conventional call-by-name technique.

Most of the call-by-number routines have evolved into even more powerful call-by-name routines, many of which are
supported by GNU COBOL and were already presented in section 8.3

Three of the original call-by-number routines never evolved call-by-name equivalents; GNU COBOL supports these
routines.

8.3.2.1. CALL X”91” USING return-code, function-code, binary-variable-arg

The original Micro Focus version of this routine is capable of providing a wide variety of functions – GNU COBOL
supports just three of those Functions

 Turning runtime switches (SWITCH-1, … , SWITCH-8) on
 Turning runtime switches (SWITCH-1, … , SWITCH-8) off
 Retrieving the number of arguments passed to a subroutine

52

The return-code argument must be a binary numeric data item (USAGE BINARY-CHAR is recommended). It will receive
a value of 0 if the operation was successful, 1 otherwise.

The function code argument must be either a numeric literal or a binary numeric data item (USAGE BINARY-CHAR is
recommended).

The third argument – variable-arg – is defined differently depending upon the function-code value, as follows:

Value of
function-code

Action To Be Performed Definition and usage of variable-arg

11

Sets and/or clears all eight of the
COBOL switches (SWITCH-1 through
SWITCH-8) that are available for
definition within SPECIAL-NAMES
(see section 4.1.4)

53

Variable-arg should be an OCCURS 8 TIMES array of USAGE
BINARY-CHAR.

Each occurrence that is set to a value of zero prior to the
CALL will cause the corresponding switch to be cleared.
Each occurrence set to 1 prior to the CALL will cause the
corresponding switch to be set.

Values other than 0 or 1 will be ignored.

12

Reads all eight of the COBOL
switches (SWITCH-1 through
SWITCH-8) that are available for
definition within SPECIAL-NAMES
(see section 4.1.4)

This argument should be an OCCURS 8 TIMES array of
USAGE BINARY-CHAR.

Each of the 1
st

 eight occurrences of the array will be set to
either 0 or 1 – 1 if the corresponding switch is set, 0
otherwise.

16

Retrieves the number of arguments
passed to the program executing
the CALL X”91”

This argument should be a binary numeric data item (USAGE
BINARY-CHAR is recommended).

The number of arguments passed to the subroutine
executing the CALL X”91” will be stored here.

8.3.2.2. CALL X“E4”

Use X”E4” to clear the screen. There are no arguments and no returned value.

8.3.2.3. CALL X”E5”

52
 GNU COBOL actually has two other ways to accomplish this task – the C$NARG subroutine and the NUMBER-OF-CALL-

PARAMETERS special register; I recommend you use one of these methods instead of the X”91” routine when coding new
programs

53
 If you only wish to set and/or clear some of the switches, it is recommended that you first use function 12 to read the current

values of the switches and then change the variable-arg occurrences for the switch(es) you wish to change before using
function 11 to actually make the changes.

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-25

The X”E5” routine will sound the PC “bell”. There are no arguments and no returned value.

8.3.2.4. CALL X”F4” USING byte, table

The Routine X”F4” packs an 8-byte area containing 8 1-byte binary values of 0 or 1 into the corresponding bit positions
of a 1-byte data item.

The byte data item need be only a single byte in size. If it is longer, the excess will be unaffected by this subroutine.

Table must be a data item at least 8 bytes long. If it is longer, the excess will be ignored by this subroutine. Typically,
table is defined similarly to the following:

01 table.
 05 each-byte OCCURS 8 TIMES USAGE BINARY-CHAR.

The following diagram illustrates how this subroutine works.

The colored squares represent the bits in the 1
st

 8 bytes of array that will be packed into byte. The white squares
represent the bits in each each-byte that will be ignored.

8.3.2.5. CALL X”F5” USING byte, table

This routine unpacks each bit of a byte into an 8-byte area so they may be individually accessed and manipulated.

The byte data item need be only a single byte in size. If it is longer, the excess will be ignored by this subroutine.

Table must be a data item at least 8 bytes long. If it is longer, the excess will be unaffected by this subroutine.
Typically, table is defined similarly to the following:

01 table.
 05 each-byte OCCURS 8 TIMES USAGE BINARY-CHAR.

The following diagram illustrates how this subroutine works.

The colored squares represent each of the 8 bits in byte. The diagram shows how those bits will be “unpacked” into
the rightmost bit of each of the 1

st
 8 consecutive bytes of array. The white squares represent the remaining bits in

each of the 1
st

 8 each-byte occurrences – all of which will be set to 0.

8.4. Binary Truncation

each-byte (1) each-byte (2) each-byte (3) each-byte (4) each-byte (5) each-byte (6) each-byte (7) each-byte (8)

byte

each-byte (1) each-byte (2) each-byte (3) each-byte (4) each-byte (5) each-byte (6) each-byte (7) each-byte (8)

byte

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-26

By default, the GNU COBOL compiler will
truncate binary data items to the precision
indicated by their PICTURE clause. For
example, the following data item will have 2
bytes of storage allocated for it:

01 Comp-5-Item PIC 9(3) COMP-5.

Because of truncation, even though this field
has enough bits allocated (16) to store values
from 0 to 65535, it will be limited to values of 0
to 999 because of its PICTURE.

Or is it?

Take a look at the small demo program shown
here. This program will perform three different
types of operations against a binary field,
displaying the results of each.

Here are the results when the program is
compiled (with truncation in-effect by default)
and executed:

You can see that truncation affected the
DISPLAY statements but appears to have had
no impact whatsoever on the MOVE and ADD
statements. This is the hidden secret about
truncation in GNU COBOL: it doesn’t really
truncate the internally-stored values – it just
truncates the DISPLAY of them!

Figure 8-3 - A Binary Truncation Demo Program

If that same program is recompiled without truncation (by adding the “-fnotrunc” switch to the ‘cobc’ command),
the results are as follows:

If this was all there was to the binary truncation issue it
wouldn’t be worth a section in this document. The fact is,
however, that binary truncation has a significant effect on the
performance of GNU COBOL programs. When binary
truncation is in effect, arithmetic operations performed

against all types of numeric data items (even USAGE DISPLAY) are slowed down.

Before continuing, it’s worth making the point that we’re NOT talking about astronomical performance degradations
here. Today’s computers are FAST, and a user sitting at the keyboard, running a GNU COBOL program is unlikely to
notice. BUT … if you have a GNU COBOL program that has to process large amounts of data, performing some
significant “number crunching” against that data as it goes, the impact of truncation could become noticeable.

The demo program shown in Figure 8-4 compares the performance of performing arithmetic operations (in a totally
non-scientific, non-rigorous way) against USAGE DISPLAY, COMP, COMP-5 and BINARY-xxx

54
 numeric data. It was

actually my intent when I first wrote the program to merely demonstrate the relative performance differences
between the first three types of numeric data storage, and it certainly met that objective.

Imagine my surprise, however, when I discovered that the use of “-fnotrunc” also made a significant difference!

54
 USAGE BINARY-xxx is supposed to store numeric data identically to USAGE COMP-5, but I felt it couldn’t hurt to check.

Bin-Item-1=760 Disp-Item-1=032760

Bin-Item-1=765 Disp-Item-1=032765
Bin-Item-1=767 Disp-Item-1=032767

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOTRUNC.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Bin-Item-1 PIC 9(3)

COMP-5
VALUE 32760.

01 Disp-Item-1 PIC 9(6).
PROCEDURE DIVISION.
000-Main.

MOVE Bin-Item-1 TO Disp-Item-1
DISPLAY

'Bin-Item-1=' Bin-Item-1
' Disp-Item-1=' Disp-Item-1

END-DISPLAY
ADD 5 TO Bin-Item-1
MOVE Bin-Item-1 TO Disp-Item-1
DISPLAY

'Bin-Item-1=' Bin-Item-1
' Disp-Item-1=' Disp-Item-1

END-DISPLAY
MOVE 32767 TO Bin-Item-1
MOVE Bin-Item-1 TO Disp-Item-1
DISPLAY

'Bin-Item-1=' Bin-Item-1
' Disp-Item-1=' Disp-Item-1

END-DISPLAY
STOP RUN.

Bin-Item-1=32760 Disp-Item-1=032760

Bin-Item-1=32765 Disp-Item-1=032765
Bin-Item-1=32767 Disp-Item-1=032767

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-27

Here’s what the program does:

 There are four numeric data items in the program – one USAGE DISPLAY, one USAGE COMP, one USAGE COMP-5
and one USAGE BINARY-LONG. Since the program was run on a computer with an Intel-architecture processor
(actually it’s an AMD, but results are identical with Intel) I wanted to see just how much more efficient COMP-5
was over COMP.

 Each data item will have 7 added to it ten million times. You’ll see why shortly.

 The time (to one-one-hundredth of a second) will be retrieved before and after each test and the difference
between the two will be DISPLAYed. This is why the computations were done so many times – it was to make
sure the timing was “measurable” with only a 1/100 second “stopwatch”.

GNU COBOL is retrieving wall-clock time, not actual CPU-used time, so other activities taking place on the computer
had to be kept to a minimum while the tests were running. I also ran the tests multiple times, just to make sure I had
consistent results (I did). Like I mentioned earlier – this is not a rigorous, scientific benchmark of numeric
performance; it’s just a quick-and-dirty comparison.

Figure 8-4 shows the program and the test results received when executing both with and without the “-fnotrunc”
switch.

Here are the conclusions I drew from running these tests many times (30). The timings shown are average times from
all Tests

With truncation ON:

 USAGE COMP has a significant performance advantage over USAGE DISPLAY
 USAGE COMP-5 has an even greater performance advantage over USAGE COMP, than COMP did over DISPLAY
 USAGE BINARY-LONG (and presumably the other BINARY-xxx USAGEs as well) perform identically (within the

measurement tolerances of the test) with COMP-5; this should be no surprise since COMP-5 and BINARY-xxx both
allocate data the same way

With truncation OFF:

 There was a huge drop in both USAGE DISPLAY and USAGE COMP timings.
 The relative performance advantage of USAGE COMP over USAGE DISPLAY is even larger with truncation off than

it was with it on.
 USAGE COMP-5 and USAGE BINARY-xxx appear to be virtually unaffected by the truncation on/off status,

although there was a .01 second increase in average execution time of those tests without truncation over those
with truncation. Given the number of times I ran the tests, it’s obvious that something makes COMP-5/BINARY-
xxx run slower without truncation than with it; that difference, however, is so miniscule that I discount it as being
statistically irrelevant

55
.

My final observation is that I see absolutely no reason whatsoever why the “-fnotrunc” option shouldn’t be used on
all GNU COBOL compilations.

If you want to squeeze every last bit of performance out of your GNU COBOL programs, don’t forget to investigate the
various “–O” (optimization) switches. Actually run programs using various optimization switches (or not) and compare
execution times, don’t just compare the generated C code because sometimes the differences can’t be “seen” at the C
source-code level.

55
 Remember – that’s a .01 second difference over TEN MILLION iterations!

GNU COBOL 2.0 Programmers Guide The GNU COBOL System Interface

11FEB2012 Version 8-28

Figure 8-4 - A Non-Scientific Comparison of Numeric Data Item USAGE Performance

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOMATH.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Begin-Time.

05 BT-HH PIC 9(2).
05 BT-MM PIC 9(2).
05 BT-SS PIC 9(2).
05 BT-HU PIC 9(2).

01 Binary-Item BINARY-LONG SIGNED VALUE 0.
01 Comp-Item COMP PIC S9(9) VALUE 0.
01 Comp-5-Item COMP-5 PIC S9(9) VALUE 0.
01 Display-Item DISPLAY PIC S9(9) VALUE 0.
01 End-Time.

05 ET-HH PIC 9(2).
05 ET-MM PIC 9(2).
05 ET-SS PIC 9(2).
05 ET-HU PIC 9(2).

78 Repeat-Count VALUE 10000000.
01 Time-Diff PIC ZZ9.99.
PROCEDURE DIVISION.
010-Test-Usage-DISPLAY.

ACCEPT Begin-Time FROM TIME END-ACCEPT
PERFORM Repeat-Count TIMES ADD 7 TO Display-Item END-PERFORM
PERFORM 100-Determine-Time-Diff
DISPLAY 'USAGE DISPLAY: ' Time-Diff ' SECONDS' END-DISPLAY.

020-Test-Usage-COMP.
ACCEPT Begin-Time FROM TIME END-ACCEPT
PERFORM Repeat-Count TIMES ADD 7 TO Comp-Item END-PERFORM
PERFORM 100-Determine-Time-Diff
DISPLAY 'USAGE COMP: ' Time-Diff ' SECONDS' END-DISPLAY.

030-Test-Usage-COMP-5.
ACCEPT Begin-Time FROM TIME END-ACCEPT
PERFORM Repeat-Count TIMES ADD 7 TO Comp-5-Item END-PERFORM
PERFORM 100-Determine-Time-Diff
DISPLAY 'USAGE COMP-5: ' Time-Diff ' SECONDS' END-DISPLAY.

040-Test-Usage-BINARY.
ACCEPT Begin-Time FROM TIME END-ACCEPT
PERFORM Repeat-Count TIMES ADD 7 TO Binary-Item END-PERFORM
PERFORM 100-Determine-Time-Diff
DISPLAY 'USAGE BINARY: ' Time-Diff ' SECONDS' END-DISPLAY.

099-Done.
STOP RUN.

100-Determine-Time-Diff.
ACCEPT End-Time FROM TIME END-ACCEPT
COMPUTE Time-Diff =
((ET-HH * 360000 + ET-MM * 6000 + ET-SS * 100 + ET-HU)
- (BT-HH * 360000 + BT-MM * 6000 + BT-SS * 100 + BT-HU))
/ 100.

USAGE DISPLAY: 0.69 SECONDS
USAGE COMP: 0.06 SECONDS
USAGE COMP-5: 0.05 SECONDS
USAGE BINARY: 0.05 SECONDS

Results with truncation
turned off (“-fnotrunc”
used on ‘cobc’)

USAGE DISPLAY: 6.49 SECONDS
USAGE COMP: 2.81 SECONDS
USAGE COMP-5: 0.04 SECONDS
USAGE BINARY: 0.04 SECONDS

Results with truncation
turned on (the default)

GNU COBOL 2.0 Programmers Guide So, You’re a New COBOL Programmer?

11FEB2012 Version 9-1

9. So, You’re a New COBOL Programmer?

This chapter deals with a variety of stylistic issues that may be of interest to someone who is just starting out learning
and using COBOL. Much of this chapter makes stylistic recommendations and suggestions for how to write your own
programs. The sample programs in chapter 10 (“Sample Programs”) were coded using almost all of these
recommendations.

There’s no particular order of importance to the topics presented here.

9.1. Marking Changes in Programs

For quite a while now (back to the 1980s), the “sequence number area” of a COBOL statement (columns 1-6) has come
to be used as a change indicator area. Programmers would place a code in columns 1-6 of every line they changed in a
program. The author works in a COBOL shop where change indicators of the form “xxmmyy” are required on every
altered line of a program – “xx” is the initials of the programmer while “mmyy” are the month and two-digit year of
the date the change was made. This is frequently accompanied by a comment block at or near the top of a COBOL
program providing general documentation of what changes were made and what change indicator was used to mark
that change.

The GCic sample program source listing provides an excellent example of such documentation.

This technique of using columns 1-6 as a change indicator will ONLY work if fixed source-record format is in effect.

Marking changes becomes more of a challenges when free-format source code is in effect. Creating a top-of-program
comment block to generically describe changes that have been made isn’t difficult, even in free-form. What IS
difficult, however, is comping up with a scheme for per-statement markup of changes that doesn’t introduce a
ridiculously excessive number of source lines to the program. I’m not sure there is a good answer to this problem (if a
reader has one, please let me know). Generally, I’ve noticed that shops using free-format conventions for their COBOL
source tend to stick with just the top-of-program comment block combined with minimal comment blocks sprinkled
throughout the program noting areas that underwent major changes.

See Also…

Fixed-Format Source Code 1.5.1.1

Sample Programs: GCic 10.4

9.2. Data Item Coding and Naming Conventions

When programs get very large, it becomes more and more challenging to keep track of the data items that will be
used in the program. Here are, in no particular order of importance, are a variety of conventions that can simplfy that
problem.

Remember that the points described here are intended to make things easier for you – the programmer. No COBOL
compiler cares one way or another whether any of these suggestions are followed.

1. Avoid the use of level 77 data items in new programs. Once (1968 and before) there were valid reasons for
creating level-77 data items, but since the 1974 ANSI standard of COBOL there really hasn’t been any reason why
an elementary level-01 data item couldn’t have been used instead of a level-77 item.

2. Allocate level-01 data items in alphabetical sequence in the program source wherever practical. This will make it
vastly easier to locate the definition of an 01-level item in the program source.

3. Consider prefixing data items with an indication of where in the program structure they were created. For
example:

 Everything defined in the FILE SECTION starts with “F-“

 Everything defined in WORKING-STORAGE starts with “WS-“

 Everything defined in LOCAL-STORAGE starts with “LS-“

 Everything defined in the LINKAGE SECTION starts with “L-“

 Everything defined in the SCREEN SECTION starts with “S-“

GNU COBOL 2.0 Programmers Guide So, You’re a New COBOL Programmer?

11FEB2012 Version 9-2

A convention such as this makes it simple, when you’re reviewing code in the PROCEDURE DIVISION, to know
what section of the DATA DIVISION to look in to locate the detailed description of a data item.

4. Consider including an acronym to be inserted into the name of any data item defined directly or indirectly
subordinate to an 01-level item, typically to be specified after any section-level tag, if you’re using them, as
discussed in item #3 above. For example, consider the names used in the following structure:

01 WS-FILE-STATUS-MESSAGE.
 05 FILLER PIC X(13) VALUE ‘Status Code: ‘.
 05 WS-FSM-Status-CD PIC 9(2).
 05 FILLER PIC X(11) VALUE ‘, Meaning: ‘.
 05 WS-FSM-Msg-TXT PIC X(25).

The “-FSM-“ acronyms make it easier to locate – in the program source code - the description of the 01-item the
status code and message text items belong to.

5. Consider including a trailing descriptor of the nature of all data items in their names. Two examples of this – “-
CD” and “-TXT” were included in the above example. The following chart presents a variety of such descriptors
the author has encountered and used through the years:

Descriptor Usage

-ADDR The data item contains all or a part of an Address (City-ADDR, State-ADDR, Street-ADDR, …)

-BOOL A level-88 data item (which only has the value TRUE or FALSE)

-CD A CODE whose value denotes information content above and beyond that of the mere value itself.
Some examples could be “Error-CD”, “Status-CD”, “Billing-CD”

-CHR A data item containing a single character of data.

-CONST A constant, specified as a level-78 data item, a level-01 item with the CONST attribute

-DT The data item contains a complete or partial date (Birth-DT, Birth-Month-DT, Birth-Year-DT, …)

-DTTM A data item containing both a date and a time

-FILE A file name. Note that these items would probably also have a “F-“ prefix.

-IDX A data item used as a table index (see section 9.3)

-NM All or a portion of a person’s name. These could be extended to include business names, product
names, etc.

-PTR A data item whose USAGE is POINTER

-NUM A generic numeric data item that doesn’t fit into any of the other categories

-QTY A count of something

-REC An 01-level item defined in the FILE SECTION (constituting the layout of a record within a file). Note
that these items would probably also have a “F-“ prefix.

-SCR The data item contains a complete or partial screen description (appropriate for SCREEN SECTION
01-level data items).

-SUB A numeric item used as a table subscript (see section 9.3)

-TEL All or part of a telephone number

-TM The data item contains a complete or partial time value

-TXT The data item contains generic alphanumeric text that doesn’t fit into any of the other categories.

The above is by no means an exhaustive list, but good programmers will use as few of these descriptors as
possible as having too many defeats any benefits of such classification/documentation efforts.

9.3. Table Subscripting versus Table Indexing

The elements of a table may be referenced either using a subscript or an index. Syntactically, this is coded using
parenthesis, as per the following three examples, all of which store the letter “A” into the 17

th
 occurrence of a data

item named WSS- Output-Image-TXT:

1. MOVE ‘A’ TO WSS-Output-Image-TXT (17)

2. MOVE 17 TO WSS-OI-SUB
 MOVE ‘A’ TO WSS-Output-Image-TXT (WSS-OI-SUB)

3. SET WSS-OI-IDX TO 17

GNU COBOL 2.0 Programmers Guide So, You’re a New COBOL Programmer?

11FEB2012 Version 9-3

MOVE ‘A’ TO WSS-Output-Image-TXT (WSS-OI-IDX)

Examples 1 and 2 are referred to as subscripting while example 3 is known as indexing. The distinction is fairly simple
– INDEXING is the process of referencing an element of a table utilizing a data item with an explicitly or implicitly
defined USAGE of INDEX to select the desired occurrence, while SUBSCRIPTING is the process of referencing an
element of a table utilizing either a numeric constant or an unedited numeric data item to select the desired
occurrence.

Various implementations of COBOL generate object code that is quite different in each of these three situations, and
GNU COBOL is no exception. In general, table references such as example #1 (constant subscript) generate the
smallest, simplest and fastest object code while table references such as example #2 (numeric data item subscript)
generate the largest, most-complicated and slowest object code. Table references such as example #3 (table indexing)
generate object code that falls in the middle of the other two but is far closer in efficiency to example #1 than #2.

Some COBOL statements (SEARCH, SEARCH ALL and table-based SORT) require you to index the affected table and to
utilize that index with those statements. With any other references to tables, the choice is left to the programmer as
to which approach should be used. In general, follow these rules:

1. Use constant subscripts (example #1) wherever possible/practical.

2. If references to table elements are going to be performed many, many times (tens or hundreds of thousands of
times or more) during program execution, you will probably see a noticeable improvement in program execution
time if you use indexing versus subscripting.

Since it’s impossible to perform any arithmetic operation against an index data item directly (other than a simple
incrementation or decrementation operation), situations where any non-trivial computations are required to
calculate the effective occurrence number for a table reference will require you to use a numeric data item to
serve as the receiving field for the calculation. That calculated value would then need to be saved into the index
data item via a SET statement.

If you only need to use the computed occurrence number once, you might as well just use the computed
occurrence number data item as a subscript. If, however, you will need to use a computed “subscript” more than
once, the run-time overhead of converting that occurrence value to an index (via SET) will be worth the coding
effort.

Whew!

3. If references to table elements are not going to be performed many, many times it probably won’t make much
difference whether you use indexing or subscripting.

If you are comfortable with the “C” programming language, you might find the following simple GNU COBOL program
useful in exploring the differences between subscripting and indexing:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SUBVSINDEX.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 WS-TABLE-SUB BINARY-LONG.
 01 WS-TABLE.
 05 WS-TABLE-ENTRY OCCURS 20 TIMES
 INDEXED BY WS-TABLE-IDX
 PIC X(1).
 PROCEDURE DIVISION.
 000-Main SECTION.
 E1. MOVE 'A' TO WS-TABLE-ENTRY (17)
 .
 E2. MOVE 17 TO WS-TABLE-SUB
 MOVE 'A' TO WS-TABLE-ENTRY (WS-TABLE-SUB)
 .
 E3. SET WS-TABLE-IDX TO 17
 MOVE 'A' TO WS-TABLE-ENTRY (WS-TABLE-SUB)
 .

GNU COBOL 2.0 Programmers Guide So, You’re a New COBOL Programmer?

11FEB2012 Version 9-4

Compile this program as follows (the assumption is made that you are executing the cobc command from the
directory in which the above program source code (subvsindex.cbl) exists.

cobc –C –save-temps subvsindex.cbl

After this command is executed, the files “subvsindex.c” will contain the “PROCEDURE DIVISION” C code and
“subvsindex.c.1.h” will contain the “WORKING-STORAGE” C code.

See Also…

Giving a Data Item a Compile-Time VALUE 5.2.1.12

Referencing Table Entries 6.1.1

The SEARCH Statement 6.4.38.1

The SET UP/DOWN Statement 6.2.39.5

The SEARCH ALL Statement 6.4.38.2

The SORT Statement (Table Sort) 6.4.40.2

The SET (Index) Statement 6.2.39.4

9.4. Copybook Naming Conventions and Usage

Since the intent of a copybook is to introduce COBOL code into a particular spot in a program via the COPY statement,
it is always a good idea to prefix copybook names with a two-character sequence that identifies where in a program
it’s contents are intended to be COPYed.

For example:

IDxxxxxxxx copybooks containing code intended for the IDENTIFICATION DIVISION. These will be rare as you
almost never encounter COPYed code in the IDENTIFICATION DIVISION.

EDxxxxxxxx copybooks containing code intended for use in the ENVIRONMENT DIVISION. These copybooks are
generally used for predefined SPECIAL-NAMES or FILE-CONTROL syntax,

DDxxxxxxxx copybooks that contain data definitions.

PDxxxxxxxx copybooks that contain executable instructions.

9.5. PROCEDURE DIVISION Sections Versus Paragraphs

The issue of whether to use section and/or paragraph names (collectively referred to as procedure names) within the
PROCEDURE DIVISION is one approaching religious significance with many COBOL programmers.

COBOL programming standards used by many organizations that use the language generally call for procedure names
to:

1. Contain a leading numeric component

2. Be defined in the PROCEDURE DIVISION in non-decreasing sequence of that numeric component.

When you are looking at or editing any large COBOL program that has been created with programming standards that
include these two rules, it is always a simple thing to know whether a reference to a procedure is being made to code
that exists before or after your current location in the program!

Technically, GNU COBOL does not require ANY procedure names be defined unless:

1. You are using the ALTER statement (the use of which should be avoided at all costs)

2. You are using Format 1 of the PERFORM Statement

3. You are using a GO TO Statement

4. You are using a SORT or MERGE statement with either (or both) an INPUT PROCEDURE or OUTPUT
PROCEDURE

Since it is difficult to write any non-trivial COBOL program that uses none of the above, lets assume you will be
including at least one section or paragraph in your GNU COBOL programs.

I like to use PROCEDURE DIVISION paragraphs and sections as follows.

GNU COBOL 2.0 Programmers Guide So, You’re a New COBOL Programmer?

11FEB2012 Version 9-5

1. The very first procedure defined in the PROCEDURE DIVISION of my programs, assuming no DECLARATIVES
are defined, will be a SECTION named “000-Main”. The declaration of this procedure will immediately follow
the PROCEDURE DIVISION header (or END DECLARATIVES if DECLARATIVES are used).

2. Any procedures referenced by MERGE, PERFORM, or SORT statements will be defined as their own sections.

3. Any procedures referenced by GO TO statements will be defined as paragraphs, and those paragraphs will be
defined in the same section as the GO TO statements that reference them. In other words, GO TO
statements may not be used to transfer control to a point in a different section. This is NOT a GNU COBOL
rule – this is my own personal rule intended to improve the readability of my programs.

4. I always include a numeric prefix to all procedure names I define, and those numbers are assigned in non-
decreasing sequence of their value. Thus it is always possible, provided you know in what procedure the GO
TO, MERGE, PERFORM or SORT statement you are looking at is located, to know whether you should look
forward or backward in the program to find the procedure the statement is referencing.

5. I do not use THRU on any MERGE, PERFORM or SORT statement unless the programming standards of the
shop in which I am working requires it.. My reasoning for this is that it is too easy to accidentally introduce a
new procedure into the scope of a PERFORM.

See Also…

The USE Statement and DECLARATIVES 6.1.4

The ALTER Statement 6.2.4

PERFORM Format 1 - Procedural 6.2.30.1

The GO TO Statement 6.2.20

The MERGE Statement 6.2.25

SORT Format 1 – File-based SORT 6.2.40.1

9.6. COMPUTE Versus ADD, SUBTRACT, MULTIPLY and DIVIDE

Over the years, there has been much debate over the effectiveness, appropriateness and arithmetic accuracy of using
the COMPUTE statement rather than the four basic arithmetic operation statements (ADD, SUBTRACT, MULTIPLY,
DIVIDE).

Here are the facts. Draw your own conclusions as to which approach is more appropriate under which circumstances.

1. The COMPUTE statement supports exponentiation (via the “**” operator) – there is no equivalent basic
arithmetic statement. Although you could simulate integral exponentiation (raising a value to the third power, for
example) using MULTIPLY statements,and you may use the SQRT built-in intrinsic function to find a square root,
there’s just no (easy) way to find the ¼ root of a value without using COMPUTE.

2. For non-trivial computations, COMPUTE statements “read” better. Take this, for example:

COMPUTE R = (A + B * C) / D

As compared to:

MULTIPLY B BY C GIVING TEMP
ADD A TO TEMP
DIVIDE TEMP BY D GIVING R

3. For non-trivial computations, COMPUTE statements may execute faster than the equivalent chain of basic
arithmetic statements. For example, the COMPUTE statement shown in #2 above executes about 25% faster on
than does the MULTIPLY-ADD-DIVIDE sequence.

4. For trivial computations, on the other hand, I prefer the inherent readability of a statement such as this:

ADD 1 TO WSS-Input-Trans-QTY

to this:

COMPUTE WSS-Input-Trans-QTY = WSS-Input-Trans-QTY + 1

See Also…

The ADD Statement 6.2.2

The COMPUTE Statement 6.2.9

The MULTIPLY Statement 6.2.27

The SUBTRACT Statement 6.2.44

GNU COBOL 2.0 Programmers Guide So, You’re a New COBOL Programmer?

11FEB2012 Version 9-6

The DIVIDE Statement 6.2.13

GNU COBOL 2.0 Programmers Guide FileStat-Msgs.cpy – File Status Values Sample Programs

11FEB2012 Version Page 10-1

10. Sample Programs

This chapter contains some sample GNU COBOL programs, subroutines, functions and copybooks. All code shown here is included in release-appropriate form within the “samples”
directory of GNU COBOL distributions that I prepare. They are also available upon request using the email address on the cover.

All program listings were created by the GCic GNU COBOL Interactive Compiler (itself a sample program listed in section 10.4).

10.1. FileStat-Msgs.cpy – File Status Values

The FileStat-Msgs.cpy copybook contains an EVALUATE statement to translate the two-digit file status codes that may be generated by file I/O statements.

The copybook assumes that the file status data item name is “STATUS” and the error message data item is named “MSG”. By using the COPY statement’s REPLACING clause, however,
you may use the data names you wish, as follows:

COPY FileStat-Msgs

 REPLACING STATUS BY file-status-data-item-name
 MSG BY error-message-data-item-name

Here’s the FileStat-Msgs.cpy copybook:

 EVALUATE STATUS

 WHEN 00 MOVE 'SUCCESS ' TO MSG

 WHEN 02 MOVE 'SUCCESS DUPLICATE ' TO MSG

 WHEN 04 MOVE 'SUCCESS INCOMPLETE ' TO MSG

 WHEN 05 MOVE 'SUCCESS OPTIONAL ' TO MSG

 WHEN 07 MOVE 'SUCCESS NO UNIT ' TO MSG

 WHEN 10 MOVE 'END OF FILE ' TO MSG

 WHEN 14 MOVE 'OUT OF KEY RANGE ' TO MSG

 WHEN 21 MOVE 'KEY INVALID ' TO MSG

 WHEN 22 MOVE 'KEY EXISTS ' TO MSG

 WHEN 23 MOVE 'KEY NOT EXISTS ' TO MSG

 WHEN 30 MOVE 'PERMANENT ERROR ' TO MSG

 WHEN 31 MOVE 'INCONSISTENT FILENAME ' TO MSG

 WHEN 34 MOVE 'BOUNDARY VIOLATION ' TO MSG

 WHEN 35 MOVE 'FILE NOT FOUND ' TO MSG

 WHEN 37 MOVE 'PERMISSION DENIED ' TO MSG

 WHEN 38 MOVE 'CLOSED WITH LOCK ' TO MSG

 WHEN 39 MOVE 'CONFLICT ATTRIBUTE ' TO MSG

 WHEN 41 MOVE 'ALREADY OPEN ' TO MSG

 WHEN 42 MOVE 'NOT OPEN ' TO MSG

 WHEN 43 MOVE 'READ NOT DONE ' TO MSG

 WHEN 44 MOVE 'RECORD OVERFLOW ' TO MSG

 WHEN 46 MOVE 'READ ERROR ' TO MSG

 WHEN 47 MOVE 'INPUT DENIED ' TO MSG

 WHEN 48 MOVE 'OUTPUT DENIED ' TO MSG

 WHEN 49 MOVE 'I/O DENIED ' TO MSG

 WHEN 51 MOVE 'RECORD LOCKED ' TO MSG

 WHEN 52 MOVE 'END-OF-PAGE ' TO MSG

 WHEN 57 MOVE 'I/O LINAGE ' TO MSG

 WHEN 61 MOVE 'FILE SHARING FAILURE ' TO MSG

 WHEN 91 MOVE 'FILE NOT AVAILABLE ' TO MSG

 END-EVALUATE.

GNU COBOL 2.0 Programmers Guide COBDUMP – A Hex/ASCII Data Dump Subroutine Sample Programs

11FEB2012 Version Page 10-2

10.2. COBDUMP – A Hex/ASCII Data Dump Subroutine

COBDUMP is a useful little utility subroutine to produce a formatted hexadecimal and character dump of the data area passed to it.

If you follow the GNU COBOL forums, you’ve undoubtedly heard about the CBL_OC_DUMP subroutine that was the winning entry in a GNU COBOL programming contest. It’s a great tool
for producing data dumps, and it’s now included in the official GNU COBOL distributions.

For now though, I’ll keep using my good ol’ “COBDUMP” routine. It’s been my travelling companion from COBOL job to COBOL job since 1971. Here it is, all tuned up for GNU COBOL, with
new tires and a fresh coat of paint.

GNU COBOL 2.0 Programmers Guide COBDUMP – A Hex/ASCII Data Dump Subroutine Sample Programs

11FEB2012 Version Page 10-3

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/COBDUMP.cbl
Line Statement Page: 1
====== ==
 1 >>SOURCE FORMAT IS FIXED
 2 IDENTIFICATION DIVISION.
 3 PROGRAM-ID. COBDUMP.
 4 *>***
 5 *> This is an OpenCOBOL subroutine that will generate a **
 6 *> formatted Hex/Char dump of a storage area. To use this **
 7 *> subroutine, simply CALL it as follows: **
 8 *> **
 9 *> CALL "COBDUMP" USING <data-item> **
 10 *> [<length>] **
 11 *> **
 12 *> If specified, the <length> argument specifies how many **
 13 *> bytes of <data-item> are to be dumped. If absent, all of **
 14 *> <data-item> will be dumped (i.e. LENGTH(<data-item>) will **
 15 *> be assumed for <length>). **
 16 *> **
 17 *> >>> Note that the subroutine name MUST be specified in <<< **
 18 *> >>> UPPERCASE <<< **
 19 *> **
 20 *> The dump is generated to STDERR, so you may pipe it to a **
 21 *> file when you execute your program using "2> file". **
 22 *> **
 23 *> AUTHOR: GARY L. CUTLER **
 24 *> CutlerGL@gmail.com **
 25 *> **
 26 *> NOTE: The author has a sentimental attachment to **
 27 *> this subroutine - it's been around since 1971 **
 28 *> and it's been converted to and run on 10 dif- **
 29 *> ferent operating system/compiler environments **
 30 *> **
 31 *> DATE-WRITTEN: October 14, 1971 **
 32 *> **
 33 *>***
 34 *> DATE CHANGE DESCRIPTION **
 35 *> ====== == **
 36 *> GC1071 Initial coding - Univac Dept. of Defense COBOL '68 **
 37 *> GC0577 Converted to Univac ASCII COBOL (ACOB) - COBOL '74 **
 38 *> GC1182 Converted to Univac UTS4000 COBOL - COBOL '74 w/ **
 39 *> SCREEN SECTION enhancements **
 40 *> GC0883 Converted to Honeywell/Bull COBOL - COBOL '74 **
 41 *> GC0983 Converted to IBM VS COBOL - COBOL '74 **
 42 *> GC0887 Converted to IBM VS COBOL II - COBOL '85 **
 43 *> GC1294 Converted to Micro Focus COBOL V3.0 - COBOL '85 w/ **
 44 *> extensions **
 45 *> GC0703 Converted to Unisys Universal Compiling System (UCS) **
 46 *> COBOL (UCOB) - COBOL '85 **
 47 *> GC1204 Converted to Unisys Object COBOL (OCOB) - COBOL 2002 **
 48 *> GC0609 Converted to OpenCOBOL 1.1 - COBOL '85 w/ some COBOL **
 49 *> 2002 features **

GNU COBOL 2.0 Programmers Guide COBDUMP – A Hex/ASCII Data Dump Subroutine Sample Programs

11FEB2012 Version Page 10-4

 50 *> GC0410 Enhanced to make 2nd argument (buffer length) **
 51 *> optional **
 52 *> GC0211 Ported to IBM Enterprise COBOL **
 53 *> GC0612 Updated for OpenCOBOL 2.0 **
 54 *>***

GNU COBOL 2.0 Programmers Guide COBDUMP – A Hex/ASCII Data Dump Subroutine Sample Programs

11FEB2012 Version Page 10-5

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/COBDUMP.cbl
Line Statement Page: 2
====== ==
 55 ENVIRONMENT DIVISION.
 56 CONFIGURATION SECTION.
 57 REPOSITORY.
 58 FUNCTION ALL INTRINSIC.
 59 DATA DIVISION.
 60 WORKING-STORAGE SECTION.
 61 01 WS-Addr-PTR USAGE POINTER.
 62 01 WS-Addr-NUM REDEFINES WS-Addr-PTR
 63 USAGE BINARY-LONG.
 64
 65 01 WS-Addr-SUB USAGE BINARY-CHAR.
 66
 67 01 WS-Addr-Value-NUM USAGE BINARY-LONG.
 68
 69 01 WS-Buffer-Byte-CHR.
 70 05 WS-Buffer-Byte-NUM USAGE BINARY-CHAR.
 71
 72 01 WS-Buffer-Length-NUM USAGE BINARY-LONG.
 73
 74 01 WS-Buffer-SUB PIC 9(4) COMP-5.
 75
 76 01 WS-Hex-Digit-TXT VALUE '0123456789ABCDEF'.
 77 05 WS-Hex-Digit-CHR OCCURS 16 TIMES
 78 PIC X(1).
 79
 80 01 WS-Nibble-SUB PIC 9(1) COMP-5.
 81
 82 01 WS-Nibble-Left-SUB PIC 9(1) COMP-5.
 83
 84 01 WS-Nibble-Right-SUB PIC 9(1) COMP-5.
 85
 86 01 WS-Output-Detail-TXT.
 87 05 WS-OD-Addr-TXT.
 88 10 WS-OD-Addr-Hex-CHR OCCURS 8 TIMES PIC X.
 89 05 FILLER PIC X(1).
 90 05 WS-OD-Relative-Byte-NUM PIC Z(3)9.
 91 05 FILLER PIC X(1).
 92 05 WS-OD-Hex-TXT OCCURS 16 TIMES.
 93 10 WS-OD-Hex-1-CHR PIC X.
 94 10 WS-OD-Hex-2-CHR PIC X.
 95 10 FILLER PIC X.
 96 05 WS-OD-ASCII-Data-TXT.
 97 10 WS-OD-ASCII-CHR OCCURS 16 TIMES
 98 PIC X.
 99
 100 01 WS-Output-SUB PIC 9(2) COMP-5.
 101
 102 >>SOURCE FORMAT IS FREE
 103 01 WS-Output-Header-1-TXT.

GNU COBOL 2.0 Programmers Guide COBDUMP – A Hex/ASCII Data Dump Subroutine Sample Programs

11FEB2012 Version Page 10-6

 104 05 VALUE '<-Addr-> Byte <---------------- Hexadecimal ''----------------> <---- Char ---->' PIC X(80).
 105
 106 01 WS-Output-Header-2-TXT.
 107 05 VALUE '======== ==== === ================' PIC X(80).
 108 >>SOURCE FORMAT IS FIXED

GNU COBOL 2.0 Programmers Guide COBDUMP – A Hex/ASCII Data Dump Subroutine Sample Programs

11FEB2012 Version Page 10-7

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/COBDUMP.cbl
Line Statement Page: 3
====== ==
 109
 110 LINKAGE SECTION.
 111 01 L-Buffer-TXT PIC X ANY LENGTH.
 112
 113 01 L-Buffer-Length-NUM USAGE BINARY-LONG.
 114
 115 PROCEDURE DIVISION USING L-Buffer-TXT,
 116 OPTIONAL L-Buffer-Length-NUM.
 117 000-Main SECTION.
 118 IF NUMBER-OF-CALL-PARAMETERS = 1
 119 MOVE LENGTH(L-Buffer-TXT) TO WS-Buffer-Length-NUM
 120 ELSE
 121 MOVE L-Buffer-Length-NUM TO WS-Buffer-Length-NUM
 122 END-IF
 123 MOVE SPACES TO WS-Output-Detail-TXT
 124 SET WS-Addr-PTR TO ADDRESS OF L-Buffer-TXT
 125 PERFORM 100-Generate-Address
 126 MOVE 0 TO WS-Output-SUB
 127 DISPLAY WS-Output-Header-1-TXT UPON SYSERR
 128 DISPLAY WS-Output-Header-2-TXT UPON SYSERR
 129 PERFORM VARYING WS-Buffer-SUB FROM 1 BY 1
 130 UNTIL WS-Buffer-SUB > WS-Buffer-Length-NUM
 131 ADD 1 TO WS-Output-SUB
 132 IF WS-Output-SUB = 1
 133 MOVE WS-Buffer-SUB TO WS-OD-Relative-Byte-NUM
 134 END-IF
 135 MOVE L-Buffer-TXT (WS-Buffer-SUB : 1)
 136 TO WS-OD-ASCII-CHR (WS-Output-SUB)
 137 WS-Buffer-Byte-CHR
 138 DIVIDE WS-Buffer-Byte-NUM BY 16
 139 GIVING WS-Nibble-Left-SUB
 140 REMAINDER WS-Nibble-Right-SUB
 141 ADD 1 TO WS-Nibble-Left-SUB
 142 WS-Nibble-Right-SUB
 143 MOVE WS-Hex-Digit-CHR (WS-Nibble-Left-SUB)
 144 TO WS-OD-Hex-1-CHR (WS-Output-SUB)
 145 MOVE WS-Hex-Digit-CHR (WS-Nibble-Right-SUB)
 146 TO WS-OD-Hex-2-CHR (WS-Output-SUB)
 147 IF WS-Output-SUB = 16
 148 CALL "C$PRINTABLE" USING WS-OD-ASCII-Data-TXT
 149 DISPLAY WS-Output-Detail-TXT UPON SYSERR
 150 MOVE SPACES TO WS-Output-Detail-TXT
 151 MOVE 0 TO WS-Output-SUB
 152 SET WS-Addr-PTR UP BY 16
 153 PERFORM 100-Generate-Address
 154 END-IF
 155 END-PERFORM
 156 IF WS-Output-SUB > 0
 157 CALL "C$PRINTABLE" USING WS-OD-ASCII-Data-TXT

GNU COBOL 2.0 Programmers Guide COBDUMP – A Hex/ASCII Data Dump Subroutine Sample Programs

11FEB2012 Version Page 10-8

 158 DISPLAY WS-Output-Detail-TXT UPON SYSERR
 159 END-IF
 160 EXIT PROGRAM
 161 .
 162 100-Generate-Address SECTION.

GNU COBOL 2.0 Programmers Guide COBDUMP – A Hex/ASCII Data Dump Subroutine Sample Programs

11FEB2012 Version Page 10-9

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/COBDUMP.cbl
Line Statement Page: 4
====== ==
 163 MOVE 8 TO WS-Addr-SUB
 164 MOVE WS-Addr-NUM TO WS-Addr-Value-NUM
 165 MOVE ALL '0' TO WS-OD-Addr-TXT
 166 PERFORM WITH TEST BEFORE UNTIL WS-Addr-Value-NUM = 0
 167 DIVIDE WS-Addr-Value-NUM BY 16
 168 GIVING WS-Addr-Value-NUM
 169 REMAINDER WS-Nibble-SUB
 170 ADD 1 TO WS-Nibble-SUB
 171 MOVE WS-Hex-Digit-CHR (WS-Nibble-SUB)
 172 TO WS-OD-Addr-Hex-CHR (WS-Addr-SUB)
 173 SUBTRACT 1 FROM WS-Addr-SUB
 174 END-PERFORM
 175 .

GNU COBOL 2.0 Programmers Guide COBDUMP – A Hex/ASCII Data Dump Subroutine Sample Programs

11FEB2012 Version Page 10-10

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/COBDUMP.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 5
=============== ================================ ====== =============== ===
COBDUMP 000-Main 117 PROCEDURE
COBDUMP 100-Generate-Address 162 PROCEDURE 125 153
COBDUMP L-Buffer-Length-NUM 113 LINKAGE 116 121
COBDUMP L-Buffer-TXT 111 LINKAGE 115 119 124 135
COBDUMP LENGTH PROCEDURE 119
COBDUMP NUMBER-OF-CALL-PARAMETERS PROCEDURE 118
COBDUMP WS-Addr-NUM 62 WORKING-STORAGE 164
COBDUMP WS-Addr-PTR 61 WORKING-STORAGE 62 124* 152*
COBDUMP WS-Addr-SUB 65 WORKING-STORAGE 163* 172 173
COBDUMP WS-Addr-Value-NUM 67 WORKING-STORAGE 164* 166 167 168*
COBDUMP WS-Buffer-Byte-CHR 69 WORKING-STORAGE 137
COBDUMP WS-Buffer-Byte-NUM 70 WORKING-STORAGE 138
COBDUMP WS-Buffer-Length-NUM 72 WORKING-STORAGE 119* 121* 130
COBDUMP WS-Buffer-SUB 74 WORKING-STORAGE 129* 130 133 135
COBDUMP WS-Hex-Digit-CHR 77 WORKING-STORAGE 143 145 171
COBDUMP WS-Hex-Digit-TXT 76 WORKING-STORAGE
COBDUMP WS-Nibble-Left-SUB 82 WORKING-STORAGE 139* 141* 143
COBDUMP WS-Nibble-Right-SUB 84 WORKING-STORAGE 140* 142* 145
COBDUMP WS-Nibble-SUB 80 WORKING-STORAGE 169* 170* 171
COBDUMP WS-OD-Addr-Hex-CHR 88 WORKING-STORAGE 172*
COBDUMP WS-OD-Addr-TXT 87 WORKING-STORAGE 165*
COBDUMP WS-OD-ASCII-CHR 97 WORKING-STORAGE 136*
COBDUMP WS-OD-ASCII-Data-TXT 96 WORKING-STORAGE 148* 157*
COBDUMP WS-OD-Hex-1-CHR 93 WORKING-STORAGE 144*
COBDUMP WS-OD-Hex-2-CHR 94 WORKING-STORAGE 146*
COBDUMP WS-OD-Hex-TXT 92 WORKING-STORAGE
COBDUMP WS-OD-Relative-Byte-NUM 90 WORKING-STORAGE 133*
COBDUMP WS-Output-Detail-TXT 86 WORKING-STORAGE 123* 149 150* 158
COBDUMP WS-Output-Header-1-TXT 103 WORKING-STORAGE 127
COBDUMP WS-Output-Header-2-TXT 106 WORKING-STORAGE 128
COBDUMP WS-Output-SUB 100 WORKING-STORAGE 126* 131* 132 136 144 146 147 151*
 156

GNU COBOL 2.0 Programmers Guide DAY-FROM-DATE – A Function to Determine Day of Week From a Date Sample Programs

11FEB2012 Version Page 10-11

10.3. DAY-FROM-DATE – A Function to Determine Day of Week From a Date

DAY-FROM-DATE is a user-defined function that accepts a single argument – either a 7-digit Julian date in the form “yyyyddd” or an 8-digit Gregorian date in the form “yyyymmdd”. This
argument may be supplied either as a PIC 9(n) USAGE DISPLAY data item (n=7 or 8) or as a 7- or 8-digit numeric literal.

The subroutine will determine if the supplied date is a valid date in the year range 0000 thru 9999 and what day of the week that date fell on.

The value returned will be zero if the date argument was invalid or an integer in the range 1-7, representing Sunday thru Saturday.

GNU COBOL 2.0 Programmers Guide DAY-FROM-DATE – A Function to Determine Day of Week From a Date Sample Programs

11FEB2012 Version Page 10-12

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/DAY-FROM-DATE.cbl
Line Statement Page: 1
====== ==
 1 >>SOURCE FORMAT IS FIXED
 2 IDENTIFICATION DIVISION.
 3 FUNCTION-ID. DAY-FROM-DATE.
 4 *>**
 5 *> This GNU COBOL user-defined function converts a Gregorian or **
 6 *> Julian date into a numeric day of the week. **
 7 *>**
 8 *> Arguments: **
 9 *> **
 10 *> Calendar-Date A PIC 9 data item or numeric literal which **
 11 *> will be treated as a calendar date as fol- **
 12 *> lows: **
 13 *> **
 14 *> 7-digit value: Interpreted as a Julian date **
 15 *> in the form yyyyddd **
 16 *> 8-digit value: Interpreted as a Gregorian **
 17 *> date in the form yyyymmdd **
 18 *> **
 19 *> The result returned will be one of the following: **
 20 *> **
 21 *> 0: The supplied date is invalid **
 22 *> 1: The supplied date is a Sunday **
 23 *> 2: The supplied date is a Monday **
 24 *> . **
 25 *> . **
 26 *> . **
 27 *> 7: The supplied date is a Saturday **
 28 *>**
 29 ENVIRONMENT DIVISION.
 30 CONFIGURATION SECTION.
 31 REPOSITORY.
 32 FUNCTION ALL INTRINSIC.
 33 DATA DIVISION.
 34 WORKING-STORAGE SECTION.
 35 01 WS-Input-Date-DT.
 36 05 WS-ID-YYYY-NUM PIC 9(4).
 37 05 WS-ID-MM-NUM PIC 9(2).
 38 05 WS-ID-DD-NUM PIC 9(2).
 39 01 WS-Y-NUM BINARY-LONG.
 40 01 WS-M-NUM BINARY-LONG.
 41 01 WS-Temp-NUM BINARY-LONG.
 42 LINKAGE SECTION.
 43 01 L-Input-Date-DT PIC 9 ANY LENGTH.
 44 01 L-Output-Day-NUM USAGE BINARY-LONG
 45 SIGNED.
 46 PROCEDURE DIVISION USING L-Input-Date-DT
 47 RETURNING L-Output-Day-NUM.
 48 000-Main SECTION.
 49 CALL "C$PARAMSIZE" USING 1
 50 EVALUATE RETURN-CODE
 51 WHEN 7
 52 IF TEST-DAY-YYYYDDD(L-Input-Date-DT) > 0
 53 MOVE 0 TO L-Output-Day-NUM
 54 GOBACK

GNU COBOL 2.0 Programmers Guide DAY-FROM-DATE – A Function to Determine Day of Week From a Date Sample Programs

11FEB2012 Version Page 10-13

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/DAY-FROM-DATE.cbl
Line Statement Page: 2
====== ==
 55 END-IF
 56 MOVE DATE-OF-INTEGER(INTEGER-OF-DAY(L-Input-Date-DT))
 57 TO WS-Input-Date-DT
 58 WHEN 8
 59 IF TEST-DATE-YYYYMMDD(L-Input-Date-DT) > 0
 60 MOVE 0 TO L-Output-Day-NUM
 61 GOBACK
 62 END-IF
 63 MOVE L-Input-Date-DT TO WS-Input-Date-DT
 64 WHEN OTHER
 65 MOVE 0 TO L-Output-Day-NUM
 66 GOBACK
 67 END-EVALUATE
 68 *> IF january OR february
 69 *> y = year - 1
 70 *> m = month + 10
 71 *> ELSE
 72 *> y = year
 73 *> m = month - 2
 74 *> END-IF
 75 *> For Gregorian calendar:
 76 *> result = (day + y + y/4 - y/100 + y/400 + (31*m)/12) mod 7
 77 *> (All divisions are integer divisions, discarding any remainder)
 78 IF WS-ID-MM-NUM = 1 OR 2
 79 SUBTRACT 1 FROM WS-ID-YYYY-NUM GIVING WS-Y-NUM
 80 ADD WS-ID-MM-NUM, 10 GIVING WS-M-NUM
 81 ELSE
 82 MOVE WS-ID-YYYY-NUM TO WS-Y-NUM
 83 SUBTRACT 2 FROM WS-ID-MM-NUM GIVING WS-M-NUM
 84 END-IF
 85 COMPUTE L-Output-Day-NUM =
 86 WS-ID-DD-NUM
 87 + WS-Y-NUM
 88 + INTEGER(WS-Y-NUM/4)
 89 - INTEGER(WS-Y-NUM/100)
 90 + INTEGER(WS-Y-NUM/400)
 91 + INTEGER((31*WS-M-NUM)/12)
 92 DIVIDE L-Output-Day-NUM BY 7
 93 GIVING WS-Temp-NUM
 94 REMAINDER L-Output-Day-NUM
 95 ADD 1 TO L-Output-Day-NUM
 96 GOBACK
 97 .
 98

GNU COBOL 2.0 Programmers Guide DAY-FROM-DATE – A Function to Determine Day of Week From a Date Sample Programs

11FEB2012 Version Page 10-14

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/DAY-FROM-DATE.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 3
=============== ================================ ====== =============== ===
DAY-FROM-DATE 000-Main 48 PROCEDURE
DAY-FROM-DATE DATE-OF-INTEGER PROCEDURE 56
DAY-FROM-DATE INTEGER PROCEDURE 88 89 90 91
DAY-FROM-DATE INTEGER-OF-DAY PROCEDURE 56
DAY-FROM-DATE L-Input-Date-DT 43 LINKAGE 46 52 56 59 63
DAY-FROM-DATE L-Output-Day-NUM 44 LINKAGE 47 53* 60* 65* 85* 92 94* 95*
DAY-FROM-DATE RETURN-CODE PROCEDURE 50
DAY-FROM-DATE TEST-DATE-YYYYMMDD PROCEDURE 59
DAY-FROM-DATE TEST-DAY-YYYYDDD PROCEDURE 52
DAY-FROM-DATE WS-ID-DD-NUM 38 WORKING-STORAGE 86
DAY-FROM-DATE WS-ID-MM-NUM 37 WORKING-STORAGE 78 80 83
DAY-FROM-DATE WS-ID-YYYY-NUM 36 WORKING-STORAGE 79 82
DAY-FROM-DATE WS-Input-Date-DT 35 WORKING-STORAGE 57* 63*
DAY-FROM-DATE WS-M-NUM 40 WORKING-STORAGE 80* 83* 91
DAY-FROM-DATE WS-Temp-NUM 41 WORKING-STORAGE 93*
DAY-FROM-DATE WS-Y-NUM 39 WORKING-STORAGE 79* 82* 87 88 89 90

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-15

10.4. GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End

This is MUCH more than a mere demonstration program – it’s also a very practical utility! The “GCic” (GNU COBOL Interactive Compiler) is a TUI (Textual User Interface) program that may
be used as a full-screen interface to the “cobc” compiler. In addition, GCic can produce neat, concise and useful cross-reference listings of GNU COBOL programs, showing not only where
user-defined names and built-in registers and initinsic functions are referenced, but also where user-defined data items ARE MODIFIED by program code! The program is well documented
(IMHO) and you should find it fairly easy to follow. The GCic.cbl program was written to work with a native Windows or Windows/MinGW build of GNU COBOL as well as a
Windows/Cygwin, UNIX or OS X build.

Source listings generated by GCic will show the original source code of your programs, with all indentation and comments preserved. Additionally, any COPYed code will be included in the
listing immediately (in compressed form) following the COPY statement that triggered its inclusion into your program.

Cross-reference listings will show all user-defined data items and procedures as well as intrinsic function and special register references. In addition to showing the line numbers at which
items were defined and referenced, those references that MODIFY the contents of the data item will have an asterisk appended to them.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-16

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 1
====== ==
 1 >>SOURCE FORMAT IS FIXED
 2 *> CONFIGURATION SETTINGS: Set these switches before compiling:
 3 *>
 4 *> LINEDRAW Set to:
 5 *> 0 To use spaces (no lines)
 6 *> 1 To use the line-drawing characterset (PC codepage 437)
 7 *> 2 To use conventional ASCII characters (+, -, |)
 8 *>
 9 *> OSX USERS - To use the linedrawing characterset,
 10 *> set your 'terminal' font to 'Lucida Console'
 11 *>
 12 *> OS Set to one of the following:
 13 *> 'CYGWIN' For a Windows/Cygwin version
 14 *> 'MINGW' For a Windows/MinGW version
 15 *> 'OSX' For a Macintosh OSX version
 16 *> 'UNIX' For a Unix/Linux version
 17 *> 'WINDOWS' For a Native Windows version
 18 *>
 19 *> SELCHAR Set to the desired single character to be used as the red
 20 *> 'feature selected' character on the screen.
 21 *> SUGGESTIONS: '>', '*', '=', '+'
 22 *>
 23 GC0712 >>DEFINE CONSTANT LINEDRAW AS 1
 24 GC0712 >>DEFINE CONSTANT OS AS 'MINGW'
 25 GC0712 >>DEFINE CONSTANT SELCHAR AS '>'
 26 *> --
 27 *> Now set these switches to establish initial (default) settings
 28 *> for the various on-screen options. Set them to a value of
 29 *> 0 if they are to be 'OFF' and 1 if they are to be 'ON'
 30 *>
 31 GC0712 >>DEFINE CONSTANT F1 AS 0 *> Assume WITH DEBUGGING MODE
 32 GC0712 >>DEFINE CONSTANT F2 AS 0 *> Procedure+Statement Trace
 33 GC0712 >>DEFINE CONSTANT F3 AS 0 *> Make A Library (DLL)
 34 GC0712 >>DEFINE CONSTANT F4 AS 0 *> Execute If Compilation OK
 35 GC0712 >>DEFINE CONSTANT F5 AS 0 *> Generate Listings
 36 GC0712 >>DEFINE CONSTANT F6 AS 1 *> "FUNCTION" Is Optional
 37 GC0712 >>DEFINE CONSTANT F7 AS 1 *> Enable All Warnings
 38 GC0712 >>DEFINE CONSTANT F8 AS 0 *> Source Is Free-Format
 39 GC0712 >>DEFINE CONSTANT F9 AS 1 *> No COMP/BINARY Truncation
 40 GC0712 >>DEFINE CONSTANT F12 AS 4 *> Default config file (1-7):
 41 *> 1 = BS2000
 42 *> 2 = COBOL85
 43 *> 3 = COBOL2002
 44 *> 4 = DEFAULT
 45 *> 5 = IBM
 46 *> 6 = MF (i.e. Microfocus)
 47 *> 7 = MVS
 48 *> --
 49 *> END CONFIGURATION SETTINGS

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-17

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 2
====== ==
 50 /
 51 IDENTIFICATION DIVISION.
 52 PROGRAM-ID. GCic.
 53 *>***
 54 *> >NOTE< >NOTE< >NOTE< >NOTE< >NOTE< >NOTE< **
 55 *> **
 56 *> If this program is compiled with '-fdebugging-line', you **
 57 *> will need to pipe SYSERR to a text file when executing GCic **
 58 *> (by adding the text '2> filename' to the end of the GCic **
 59 *> command). You may also need to press the ENTER key when **
 60 *> GCic is finished. **
 61 *>***
 62 *> This program provides a Textual User Interface (TUI) to the **
 63 *> process of compiling and (optionally) executing a GNU COBOL **
 64 *> program. **
 65 *> **
 66 *> This programs execution syntax is as follows: **
 67 *> **
 68 *> GCic <program-path-and-filename> [<switch>...] **
 69 *> **
 70 *> Once executed, a display screen will be presented showing **
 71 *> the compilation options that will be used. The user will **
 72 *> have the opportunity to change options, specify new ones **
 73 *> and specify any program execution arguments to be used if **
 74 *> you select the 'Execute' option. When you press the Enter **
 75 *> key the program will be compiled. **
 76 *> **
 77 *> The SCREEN SECTION contains an image of the screen. **
 78 *> **
 79 *> The '010-Parse-Args' section in the PROCEDURE DIVISION has **
 80 *> documentation on switches and their function. **
 81 *>***
 82 *> **
 83 *> AUTHOR: GARY L. CUTLER **
 84 *> CutlerGL@gmail.com **
 85 *> Copyright (C) 2009-2013, Gary L. Cutler, GPL **
 86 *> **
 87 *> DATE-WRITTEN: June 14, 2009 **
 88 *> **
 89 *>***
 90 *> DATE CHANGE DESCRIPTION **
 91 *> ====== == **
 92 *> GC0609 Don't display compiler messages file if compilation **
 93 *> Is successful. Also don't display messages if the **
 94 *> output file is busy (just put a message on the **
 95 *> screen, leave the OC screen up & let the user fix **
 96 *> the problem & resubmit. **
 97 *> GC0709 When 'EXECUTE' is selected, a 'FILE BUSY' error will **
 98 *> still cause the (old) executable to be launched. **
 99 *> Also, the 'EXTRA SWITCHES' field is being ignored. **
 100 *> Changed the title bar to lowlighted reverse video & **
 101 *> the message area to highlighted reverse-video. **
 102 *> GC0809 Add a SPACE in front of command-line args when **
 103 *> executing users program. Add a SPACE after the **

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-18

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 3
====== ==
 104 *> -ftraceall switch when building cobc command. **
 105 *> GC0909 Convert to work on Cygwin/Linux as well as MinGW **
 106 *> GC0310 Virtualized the key codes for S-F1 thru S-F7 as they **
 107 *> differ depending upon whether PDCurses or NCurses is **
 108 *> being used. **
 109 *> GC0410 Introduced the cross-reference and source listing **
 110 *> features. Also fixed a bug in @EXTRA switch proces- **
 111 *> sing where garbage will result if more than the **
 112 *> @EXTRA switch is specified. **
 113 *> GC1010 Corrected several problems reported by Vince Coen: **
 114 *> 1) Listing/Xref wouldn't work if '-I' additional **
 115 *> cobc switch specified. **
 116 *> 2) Programs coded with lowercase reserved words did **
 117 *> not get parsed properly when generating listing **
 118 *> and/or xref reports. **
 119 *> 3) Reliance on a TEMP environment variable caused **
 120 *> non-recoverable errors when generating listing **
 121 *> and/or xref reports in a session that lacks a **
 122 *> TEMP variable. **
 123 *> As a result of this change, GCic no longer runs a **
 124 *> second 'cobc' when generating listing and/or xref **
 125 *> reports. A '-save-temps' (without '=dir') specified **
 126 *> in the @EXTRA options field will be ignored. A **
 127 *> '-save-temps=dir' specified in the @EXTRA options **
 128 *> field will negate both the @XREF and @SOURCE opts, **
 129 *> if specified. **
 130 *> GC0711 Tailored for 29APR2011 version of GNU COBOL 2.0 **
 131 *> GC0712 Replaced all switches with configuration settings; **
 132 *> Tailored for 11FEB2012 version of GNU COBOL 2.0; **
 133 *> Reformatted screen layout to fit a 24x80 screen **
 134 *> rather than a 25x81 screen and to accommodate shell **
 135 *> environments having only F1-F12 (like 'terminal' in **
 136 *> OSX); Fully tested under OSX (required a few altera- **
 137 *> tions); Expanded both extra-options and runtime- **
 138 *> arguments areas to TWO lines (152 chars total) each; **
 139 *> Added support for MF/IBM/BS2000 listing-control **
 140 *> directives EJECT,SKIP1,SKIP2,SKIP3 (any of these in **
 141 *> copybooks will be ignored) **
 142 *> GC0313 Expand the source code record from 80 chars to 256 **
 143 *> to facilitate looking for "LINKAGE SECTION" in a **
 144 *> free-format file. **
 145 *> GC1113 Edited to support the change of "OpenCOBOL" to "GNU **
 146 *> COBOL" **
 147 *>***
 148 ENVIRONMENT DIVISION.
 149 CONFIGURATION SECTION.
 150 REPOSITORY.
 151 FUNCTION ALL INTRINSIC.
 152 INPUT-OUTPUT SECTION.
 153 FILE-CONTROL.
 154 GC1010 SELECT F-Cobc-Output-FILE ASSIGN TO WS-Listing-Filename-TXT
 155 ORGANIZATION IS LINE SEQUENTIAL.
 156
 157 SELECT F-Source-Code-FILE ASSIGN TO WS-File-Name-TXT

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-19

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 4
====== ==
 158 ORGANIZATION IS LINE SEQUENTIAL
 159 FILE STATUS IS WS-FSM-Status-CD.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-20

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 5
====== ==
 160 /
 161 DATA DIVISION.
 162 FILE SECTION.
 163 FD F-Cobc-Output-FILE.
 164 01 F-Cobc-Output-REC PIC X(256).
 165
 166 FD F-Source-Code-FILE.
 167 GC0313 01 F-Source-Code-REC PIC X(256).
 168
 169 WORKING-STORAGE SECTION.
 170 COPY screenio.
 78 COB-COLOR-BLACK VALUE 0.
 78 COB-COLOR-BLUE VALUE 1.
 78 COB-COLOR-GREEN VALUE 2.
 78 COB-COLOR-CYAN VALUE 3.
 78 COB-COLOR-RED VALUE 4.
 78 COB-COLOR-MAGENTA VALUE 5.
 78 COB-COLOR-YELLOW VALUE 6.
 78 COB-COLOR-WHITE VALUE 7.
 78 COB-SCR-OK VALUE 0.
 78 COB-SCR-F1 VALUE 1001.
 78 COB-SCR-F2 VALUE 1002.
 78 COB-SCR-F3 VALUE 1003.
 78 COB-SCR-F4 VALUE 1004.
 78 COB-SCR-F5 VALUE 1005.
 78 COB-SCR-F6 VALUE 1006.
 78 COB-SCR-F7 VALUE 1007.
 78 COB-SCR-F8 VALUE 1008.
 78 COB-SCR-F9 VALUE 1009.
 78 COB-SCR-F10 VALUE 1010.
 78 COB-SCR-F11 VALUE 1011.
 78 COB-SCR-F12 VALUE 1012.
 78 COB-SCR-F13 VALUE 1013.
 78 COB-SCR-F14 VALUE 1014.
 78 COB-SCR-F15 VALUE 1015.
 78 COB-SCR-F16 VALUE 1016.
 78 COB-SCR-F17 VALUE 1017.
 78 COB-SCR-F18 VALUE 1018.
 78 COB-SCR-F19 VALUE 1019.
 78 COB-SCR-F20 VALUE 1020.
 78 COB-SCR-F21 VALUE 1021.
 78 COB-SCR-F22 VALUE 1022.
 78 COB-SCR-F23 VALUE 1023.
 78 COB-SCR-F24 VALUE 1024.
 78 COB-SCR-F25 VALUE 1025.
 78 COB-SCR-F26 VALUE 1026.
 78 COB-SCR-F27 VALUE 1027.
 78 COB-SCR-F28 VALUE 1028.
 78 COB-SCR-F29 VALUE 1029.
 78 COB-SCR-F30 VALUE 1030.
 78 COB-SCR-F31 VALUE 1031.
 78 COB-SCR-F32 VALUE 1032.
 78 COB-SCR-F33 VALUE 1033.
 78 COB-SCR-F34 VALUE 1034.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-21

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 6
====== ==
 78 COB-SCR-F35 VALUE 1035.
 78 COB-SCR-F36 VALUE 1036.
 78 COB-SCR-F37 VALUE 1037.
 78 COB-SCR-F38 VALUE 1038.
 78 COB-SCR-F39 VALUE 1039.
 78 COB-SCR-F40 VALUE 1040.
 78 COB-SCR-F41 VALUE 1041.
 78 COB-SCR-F42 VALUE 1042.
 78 COB-SCR-F43 VALUE 1043.
 78 COB-SCR-F44 VALUE 1044.
 78 COB-SCR-F45 VALUE 1045.
 78 COB-SCR-F46 VALUE 1046.
 78 COB-SCR-F47 VALUE 1047.
 78 COB-SCR-F48 VALUE 1048.
 78 COB-SCR-F49 VALUE 1049.
 78 COB-SCR-F50 VALUE 1050.
 78 COB-SCR-F51 VALUE 1051.
 78 COB-SCR-F52 VALUE 1052.
 78 COB-SCR-F53 VALUE 1053.
 78 COB-SCR-F54 VALUE 1054.
 78 COB-SCR-F55 VALUE 1055.
 78 COB-SCR-F56 VALUE 1056.
 78 COB-SCR-F57 VALUE 1057.
 78 COB-SCR-F58 VALUE 1058.
 78 COB-SCR-F59 VALUE 1059.
 78 COB-SCR-F60 VALUE 1060.
 78 COB-SCR-F61 VALUE 1061.
 78 COB-SCR-F62 VALUE 1062.
 78 COB-SCR-F63 VALUE 1063.
 78 COB-SCR-F64 VALUE 1064.
 78 COB-SCR-PAGE_UP VALUE 2001.
 78 COB-SCR-PAGE_DOWN VALUE 2002.
 78 COB-SCR-KEY-UP VALUE 2003.
 78 COB-SCR-KEY-DOWN VALUE 2004.
 78 COB-SCR-ESC VALUE 2005.
 78 COB-SCR-PRINT VALUE 2006.
 78 COB-SCR-NO-FIELD VALUE 8000.
 78 COB-SCR-TIME-OUT VALUE 8001.
 78 COB-SCR-FATAL VALUE 9000.
 78 COB-SCR-MAX-FIELD VALUE 9001.
 171
 172 GC0712 01 WS-Compilation-Switches-TXT.
 173 GC0712 05 WS-CS-Args-TXT VALUE SPACES.
 174 GC0712 10 WS-CS-Arg-H1-TXT PIC X(76).
 175 GC0712 10 WS-CS-Arg-H2-TXT PIC X(76).
 176 GC0712 05 WS-CS-Filenames-TXT.
 177 GC0712 10 VALUE 'BS2000' PIC X(9).
 178 GC0712 10 VALUE 'COBOL85' PIC X(9).
 179 GC0712 10 VALUE 'COBOL2002' PIC X(9).
 180 GC0712 10 VALUE 'DEFAULT' PIC X(9).
 181 GC0712 10 VALUE 'IBM' PIC X(9).
 182 GC0712 10 VALUE 'MF' PIC X(9).
 183 GC0712 10 VALUE 'MVS' PIC X(9).
 184 GC0712 05 WS-CS-Filenames-Table-TXT REDEFINES WS-CS-Filenames-TXT.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-22

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 7
====== ==
 185 GC0712 10 WS-CS-Filename-TXT OCCURS 7 TIMES
 186 GC0712 PIC X(9).
 187 GC0712 >>IF F12 < 1
 188 GC0712 05 WS-CS-Config-NUM VALUE 4 PIC 9(1).
 189 GC0712 >>ELIF F12 > 7
 190 GC0712 05 WS-CS-Config-NUM VALUE 4 PIC 9(1).
 191 GC0712 >>ELSE
 192 GC0712 05 WS-CS-Config-NUM VALUE F12 PIC 9(1).
 193 GC0712 >>END-IF
 194 GC0712 05 WS-CS-Extra-TXT VALUE SPACES.
 195 GC0712 10 WS-CS-Extra-H1-TXT PIC X(76).
 196 GC0712 10 WS-CS-Extra-H2-TXT PIC X(76).
 197 GC0712 05 WS-CS-Switch-Defaults-TXT.
 198 GC0712 10 VALUE F1 PIC 9(1). *> WS-CS-DEBUG-CHR
 199 GC0712 10 VALUE F4 PIC 9(1). *> WS-CS-EXECUTE-CHR
 200 GC0712 10 VALUE F8 PIC 9(1). *> WS-CS-FREE-CHR
 201 GC0712 10 VALUE F3 PIC 9(1). *> WS-CS-LIBRARY-CHR
 202 GC0712 10 VALUE F5 PIC 9(1). *> WS-CS-LISTING-CHR
 203 GC0712 10 VALUE F6 PIC 9(1). *> WS-CS-NOFUNC-CHR
 204 GC0712 10 VALUE F9 PIC 9(1). *> WS-CS-NOTRUNC-CHR
 205 GC0712 10 VALUE F2 PIC 9(1). *> WS-CS-TRACEALL-CHR
 206 GC0712 10 VALUE F7 PIC 9(1). *> WS-CS-WARNALL-CHR
 207 GC0712 05 WS-CS-All-Switches-TXT REDEFINES
 208 GC0712 WS-CS-Switch-Defaults-TXT.
 209 GC0712 10 WS-CS-DEBUG-CHR PIC X(1).
 210 GC0712 10 WS-CS-EXECUTE-CHR PIC X(1).
 211 GC0712 10 WS-CS-FREE-CHR PIC X(1).
 212 GC0712 10 WS-CS-LIBRARY-CHR PIC X(1).
 213 GC0712 10 WS-CS-LISTING-CHR PIC X(1).
 214 GC0712 10 WS-CS-NOFUNC-CHR PIC X(1).
 215 GC0712 10 WS-CS-NOTRUNC-CHR PIC X(1).
 216 GC0712 10 WS-CS-TRACEALL-CHR PIC X(1).
 217 GC0712 10 WS-CS-WARNALL-CHR PIC X(1).
 218
 219 GC0909 01 WS-Cmd-TXT PIC X(512).
 220
 221 GC0712 01 WS-Cmd-Args-TXT PIC X(256).
 222
 223 GC0712 01 WS-Cmd-End-Quote-CHR PIC X(1).
 224
 225 GC0712 01 WS-Cmd-SUB USAGE BINARY-LONG.
 226
 227 01 WS-Cobc-Cmd-TXT PIC X(256).
 228
 229 01 WS-Config-Fn-TXT PIC X(12).
 230
 231 GC1113 01 WS-Delete-Fn-TXT PIC X(256).
 232
 233 01 WS-File-Name-TXT.
 234 05 WS-FN-CHR OCCURS 256 TIMES
 235 PIC X(1).
 236
 237 01 WS-File-Status-Message-TXT.
 238 05 VALUE 'Status Code: ' PIC X(13).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-23

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 8
====== ==
 239 05 WS-FSM-Status-CD PIC 9(2).
 240 05 VALUE ', Meaning: ' PIC X(11).
 241 05 WS-FSM-Msg-TXT PIC X(25).
 242
 243 GC0909 01 WS-Horizontal-Line-TXT PIC X(80).
 244 GC0909
 245 01 WS-I-SUB USAGE BINARY-LONG.
 246
 247 01 WS-J-SUB USAGE BINARY-LONG.
 248
 249 GC0712 01 WS-Listing-Filename-TXT PIC X(256).
 250
 251 01 WS-OC-Compile-DT PIC XXXX/XX/XXBXX/XX.
 252
 253 GC0712 >>IF OS = 'CYGWIN'
 254 GC0712 01 WS-OS-Dir-CHR VALUE '/' PIC X(1).
 255 GC0712 78 WS-OS-Exe-Ext-CONST VALUE '.exe'.
 256 GC0712 78 WS-OS-Lib-Ext-CONST VALUE '.dll'.
 257 GC0712 78 WS-OS-Lib-Type-CONST VALUE 'DLL)'.
 258 GC0712 01 WS-OS-Type-CD VALUE 2 PIC 9(1).
 259 GC0712 >>ELIF OS = 'MINGW'
 260 GC0712 01 WS-OS-Dir-CHR VALUE '\' PIC X(1).
 261 GC0712 78 WS-OS-Exe-Ext-CONST VALUE '.exe'.
 262 GC0712 78 WS-OS-Lib-Ext-CONST VALUE '.dll'.
 263 GC0712 78 WS-OS-Lib-Type-CONST VALUE 'DLL)'.
 264 GC0712 01 WS-OS-Type-CD VALUE 5 PIC 9(1).
 265 GC0712 >>ELIF OS = 'OSX'
 266 GC0712 01 WS-OS-Dir-CHR VALUE '/' PIC X(1).
 267 GC0712 78 WS-OS-Exe-Ext-CONST VALUE ' '.
 268 GC0712 78 WS-OS-Lib-Ext-CONST VALUE '.dylib'.
 269 GC0712 78 WS-OS-Lib-Type-CONST VALUE 'DYLIB)'.
 270 GC0712 01 WS-OS-Type-CD VALUE 4 PIC 9(1).
 271 GC0712 >>ELIF OS = 'UNIX'
 272 GC0712 01 WS-OS-Dir-CHR VALUE '/' PIC X(1).
 273 GC0712 78 WS-OS-Exe-Ext-CONST VALUE ' '.
 274 GC0712 78 WS-OS-Lib-Ext-CONST VALUE '.so'.
 275 GC0712 78 WS-OS-Lib-Type-CONST VALUE 'SO)'.
 276 GC0712 01 WS-OS-Type-CD VALUE 3 PIC 9(1).
 277 GC0712 >>ELIF OS = 'WINDOWS'
 278 GC0712 01 WS-OS-Dir-CHR VALUE '\' PIC X(1).
 279 GC0712 78 WS-OS-Exe-Ext-CONST VALUE '.exe'.
 280 GC0712 78 WS-OS-Lib-Ext-CONST VALUE '.dll'.
 281 GC0712 78 WS-OS-Lib-Type-CONST VALUE 'DLL)'.
 282 GC0712 01 WS-OS-Type-CD VALUE 1 PIC 9(1).
 283 GC0712 >>END-IF
 284 GC0909 88 WS-OS-Windows-BOOL VALUE 1, 5.
 285 GC0909 88 WS-OS-Cygwin-BOOL VALUE 2.
 286 GC0712 88 WS-OS-UNIX-BOOL VALUE 3, 4.
 287 GC0712 88 WS-OS-OSX-BOOL VALUE 4.
 288
 289 01 WS-OS-Type-FILLER-TXT.
 290 05 VALUE 'Windows' PIC X(14).
 291 05 VALUE 'Windows/Cygwin' PIC X(14).
 292 05 VALUE 'UNIX/Linux' PIC X(14).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-24

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 9
====== ==
 293 05 VALUE 'OSX' PIC X(14).
 294 05 VALUE 'Windows/MinGW' PIC X(14).
 295 01 WS-OS-Types-TXT REDEFINES WS-OS-Type-FILLER-TXT.
 296 05 WS-OS-Type-TXT OCCURS 5 TIMES
 297 PIC X(14).
 298
 299 01 WS-Output-Msg-TXT PIC X(80).
 300
 301 01 WS-Path-Delimiter-CHR PIC X(1).
 302
 303 01 WS-Prog-Extension-TXT PIC X(256).
 304
 305 01 WS-Prog-Folder-TXT PIC X(256).
 306
 307 GC0712 01 WS-Prog-File-Name-TXT.
 308 GC0712 05 WS-PFN-CHR OCCURS 256 TIMES
 309 GC0712 PIC X(1).
 310
 311 GC0712 01 WS-Pgm-Nm-TXT PIC X(31).
 312
 313 01 WS-Runtime-Switches-TXT.
 314 05 WS-RS-Compile-OK-CHR PIC X(1).
 315 88 WS-RS-Compile-OK-BOOL VALUE 'Y'.
 316 GC0909 88 WS-RS-Compile-OK-Warn-BOOL VALUE 'W'.
 317 88 WS-RS-Compile-Failed-BOOL VALUE 'N'.
 318 GC0609 05 WS-RS-Complete-CHR PIC X(1).
 319 GC0609 88 WS-RS-Complete-BOOL VALUE 'Y'.
 320 GC0609 88 WS-RS-Not-Complete-BOOL VALUE 'N'.
 321 GC0712 05 WS-RS-Quote-CHR PIC X(1).
 322 GC0712 88 WS-RS-Double-Quote-Used-BOOL VALUE 'Y' FALSE 'N'.
 323 GC0809 05 WS-RS-IDENT-DIV-CHR PIC X(1).
 324 GC0809 88 WS-RS-1st-Prog-Complete-BOOL VALUE 'Y'.
 325 GC0809 88 WS-RS-More-To-1st-Prog-BOOL VALUE 'N'.
 326 05 WS-RS-No-Switch-Chgs-CHR PIC X(1).
 327 88 WS-RS-No-Switch-Changes-BOOL VALUE 'Y'.
 328 88 WS-RS-Switch-Changes-BOOL VALUE 'N'.
 329 GC0709 05 WS-RS-Output-File-Busy-CHR PIC X(1).
 330 GC0709 88 WS-RS-Output-File-Busy-BOOL VALUE 'Y'.
 331 GC0709 88 WS-RS-Output-File-Avail-BOOL VALUE 'N'.
 332 GC0809 05 WS-RS-Source-Record-Type-CHR PIC X(1).
 333 GC0809 88 WS-RS-Source-Rec-Linkage-BOOL VALUE 'L'.
 334 GC0809 88 WS-RS-Source-Rec-Ident-BOOL VALUE 'I'.
 335 GC0712 88 WS-RS-Source-Rec-Ignored-BOOL VALUE ' '.
 336 05 WS-RS-Switch-Error-CHR PIC X(1).
 337 88 WS-RS-Switch-Is-Bad-BOOL VALUE 'Y'.
 338 88 WS-RS-Switch-Is-Good-BOOL VALUE 'N'.
 339
 340 01 WS-Tally-QTY USAGE BINARY-LONG.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-25

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 10
====== ==
 341 /
 342 SCREEN SECTION.
 343 *>
 344 *> Here is the layout of the GCic screen.
 345 *>
 346 *> The sample screen below shows how the screen would look if the LINEDRAW
 347 *> configuration setting is set to a value of 2
 348 *>
 349 *> The following sample screen layout shows how the screen looks with line-drawing
 350 *> characters disabled.
 351 *>
 352 *> 1 2 3 4 5 6 7 8
 353 *>12345678901234567890123456789012345678901234567890123456789012345678901234567890
 354 *>===
 355 GC0712*> GCic (2011/07/11 08:52) - GNU COBOL V2.0 11FEB2012 Interactive Compilation 01
 356 GC0712*>+--+ 02
 357 GC0712*>| Folder: E:\GNU COBOL\Samples | 03
 358 GC0712*>| Filename: GCic.cbl | 04
 359 GC0712*>+--+ 05
 360 GC0712*> Set/Clr Switches Via F1-F9; Set Config Via F12; ENTER Key Compiles; ESC Quits 06
 361 GC0712*>+---+------------+ 07
 362 GC0712*>| F1 Assume WITH DEBUGGING MODE F6 "FUNCTION" Is Optional | Current | 08
 363 GC0712*>| F2 Procedure+Statement Trace F7 Enable All Warnings | Config: | 09
 364 GC0712*>| F3 Make A Library (DLL) F8 Source Is Free-Format | @@@@@@@@@@ | 10
 365 GC0712*>| F4 Execute If Compilation OK F9 No COMP/BINARY Truncation | | 11
 366 GC0712*>| F5 >Produce Full Listing | | 12
 367 GC0712*>+---+------------+ 13
 368 GC0712*> Extra "cobc" Switches, If Any ("-save-temps=xxx" Prevents Listings): 14
 369 GC0712*>+--+ 15
 370 GC0712*>| __ | 16
 371 GC0712*>| __ | 17
 372 GC0712*>+--+ 18
 373 GC0712*> Program Execution Arguments, If Any: 19
 374 GC0712*>+--+ 20
 375 GC0712*>| __ | 21
 376 GC0712*>| __ | 22
 377 GC0712*>+--+ 23
 378 GC0712*> GCic Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 24
 379 *>===
 380 *>12345678901234567890123456789012345678901234567890123456789012345678901234567890
 381 *> 1 2 3 4 5 6 7 8
 382 *>
 383 *> If this program is run on Windows, it must run with codepage 437 activated to
 384 *> display the line-drawing characters. With a native Windows build or a
 385 *> Windows/MinGW build, one could use the command 'chcp 437' to set that codepage
 386 *> for display within a Windows console window (that should be the default, though).
 387 *> With a Windows/Cygwin build, set the environment variable CYGWIN to a value of
 388 *> 'codepage:oem' (this cannot be done from within the program though - you will
 389 *> have to use the 'Computer/Advanced System Settings/Environment Variables' (Vista or
 390 *> Windows 7) function to define the variable. XP Users: use 'My Computer/Properties/
 391 *> Advanced/Environment Variables'.
 392 *>
 393 *> OSX users may use line drawing characters in this and any GNU COBOL program simply
 394 *> by setting their 'terminal' application's font to "Lucida Console".

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-26

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 11
====== ==
 395 *>
 396 >>IF LINEDRAW IS EQUAL TO 0
 397 78 LD-UL-Corner VALUE ' '.
 398 78 LD-LL-Corner VALUE ' '.
 399 78 LD-UR-Corner VALUE ' '.
 400 78 LD-LR-Corner VALUE ' '.
 401 78 LD-Upper-T VALUE ' '.
 402 78 LD-Lower-T VALUE ' '.
 403 78 LD-Horiz-Line VALUE ' '.
 404 78 LD-Vert-Line VALUE ' '.
 405 >>ELIF LINEDRAW IS EQUAL TO 1
 406 78 LD-UL-Corner VALUE X'DA'.
 407 78 LD-LL-Corner VALUE X'C0'.
 408 78 LD-UR-Corner VALUE X'BF'.
 409 78 LD-LR-Corner VALUE X'D9'.
 410 78 LD-Upper-T VALUE X'C2'.
 411 78 LD-Lower-T VALUE X'C1'.
 412 78 LD-Horiz-Line VALUE X'C4'.
 413 78 LD-Vert-Line VALUE X'B3'.
 414 >>ELSE
 415 78 LD-UL-Corner VALUE '+'.
 416 78 LD-LL-Corner VALUE '+'.
 417 78 LD-UR-Corner VALUE '+'.
 418 78 LD-LR-Corner VALUE '+'.
 419 78 LD-Upper-T VALUE '+'.
 420 78 LD-Lower-T VALUE '+'.
 421 78 LD-Horiz-Line VALUE '-'.
 422 78 LD-Vert-Line VALUE '|'.
 423 >>END-IF
 424
 425 01 S-Blank-SCR LINE 1 COLUMN 1 BLANK SCREEN.
 426
 427 01 S-Switches-SCR BACKGROUND-COLOR COB-COLOR-BLACK
 428 FOREGROUND-COLOR COB-COLOR-WHITE AUTO.
 429 *>
 430 *> GENERAL SCREEN FRAMEWORK
 431 *>
 432 03 BACKGROUND-COLOR COB-COLOR-BLACK
 433 FOREGROUND-COLOR COB-COLOR-GREEN HIGHLIGHT.
 434 GC0712 05 LINE 02 COL 01 VALUE LD-UL-Corner.
 435 GC0712 05 COL 02 PIC X(78) FROM WS-Horizontal-Line-TXT.
 436 05 COL 80 VALUE LD-UR-Corner.
 437
 438 GC0712 05 LINE 03 COL 01 VALUE LD-Vert-Line.
 439 05 COL 80 VALUE LD-Vert-Line.
 440
 441 GC0712 05 LINE 04 COL 01 VALUE LD-Vert-Line.
 442 05 COL 80 VALUE LD-Vert-Line.
 443
 444 GC0712 05 LINE 05 COL 01 VALUE LD-LL-Corner.
 445 GC0712 05 COL 02 PIC X(78) FROM WS-Horizontal-Line-TXT.
 446 05 COL 80 VALUE LD-LR-Corner.
 447
 448 GC0712 05 LINE 07 COL 01 VALUE LD-UL-Corner.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-27

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 12
====== ==
 449 GC0712 05 COL 02 PIC X(65) FROM WS-Horizontal-Line-TXT.
 450 GC0712 05 COL 67 VALUE LD-Upper-T.
 451 GC0712 05 COL 68 PIC X(12) FROM WS-Horizontal-Line-TXT.
 452 05 COL 80 VALUE LD-UR-Corner.
 453
 454 GC0712 05 LINE 08 COL 01 VALUE LD-Vert-Line.
 455 GC0712 05 COL 67 VALUE LD-Vert-Line.
 456 05 COL 80 VALUE LD-Vert-Line.
 457
 458 GC0712 05 LINE 09 COL 01 VALUE LD-Vert-Line.
 459 GC0712 05 COL 67 VALUE LD-Vert-Line.
 460 05 COL 80 VALUE LD-Vert-Line.
 461
 462 GC0712 05 LINE 10 COL 01 VALUE LD-Vert-Line.
 463 GC0712 05 COL 67 VALUE LD-Vert-Line.
 464 05 COL 80 VALUE LD-Vert-Line.
 465
 466 GC0712 05 LINE 11 COL 01 VALUE LD-Vert-Line.
 467 GC0712 05 COL 67 VALUE LD-Vert-Line.
 468 05 COL 80 VALUE LD-Vert-Line.
 469
 470 GC0712 05 LINE 12 COL 01 VALUE LD-Vert-Line.
 471 GC0712 05 COL 67 VALUE LD-Vert-Line.
 472 05 COL 80 VALUE LD-Vert-Line.
 473
 474 GC0712 05 LINE 13 COL 01 VALUE LD-LL-Corner.
 475 GC0712 05 COL 02 PIC X(65) FROM WS-Horizontal-Line-TXT.
 476 GC0712 05 COL 67 VALUE LD-Lower-T.
 477 GC0712 05 COL 68 PIC X(12) FROM WS-Horizontal-Line-TXT.
 478 05 COL 80 VALUE LD-LR-Corner.
 479
 480 GC0712 05 LINE 15 COL 01 VALUE LD-UL-Corner.
 481 GC0712 05 COL 02 PIC X(78) FROM WS-Horizontal-Line-TXT.
 482 05 COL 80 VALUE LD-UR-Corner.
 483
 484 GC0712 05 LINE 16 COL 01 VALUE LD-Vert-Line.
 485 05 COL 80 VALUE LD-Vert-Line.
 486
 487 GC0712 05 LINE 17 COL 01 VALUE LD-Vert-Line.
 488 05 COL 80 VALUE LD-Vert-Line.
 489
 490 GC0712 05 LINE 18 COL 01 VALUE LD-LL-Corner.
 491 GC0712 05 COL 02 PIC X(78) FROM WS-Horizontal-Line-TXT.
 492 05 COL 80 VALUE LD-LR-Corner.
 493
 494 GC0712 05 LINE 20 COL 01 VALUE LD-UL-Corner.
 495 GC0712 05 COL 02 PIC X(78) FROM WS-Horizontal-Line-TXT.
 496 05 COL 80 VALUE LD-UR-Corner.
 497
 498 GC0712 05 LINE 21 COL 01 VALUE LD-Vert-Line.
 499 05 COL 80 VALUE LD-Vert-Line.
 500
 501 GC0712 05 LINE 22 COL 01 VALUE LD-Vert-Line.
 502 05 COL 80 VALUE LD-Vert-Line.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-28

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 13
====== ==
 503
 504 GC0712 05 LINE 23 COL 01 VALUE LD-LL-Corner.
 505 GC0712 05 COL 02 PIC X(78) FROM WS-Horizontal-Line-TXT.
 506 05 COL 80 VALUE LD-LR-Corner.
 507 *>
 508 *> TOP AND BOTTOM LINES
 509 *>
 510 GC0712 03 BACKGROUND-COLOR COB-COLOR-BLUE
 511 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 512 GC0410 05 LINE 01 COL 01 VALUE ' GCic ('.
 513 GC0410 05 COL 08 PIC X(16) FROM WS-OC-Compile-DT.
 514 GC0711 05 COL 24 VALUE ') GNU COBOL 2.0 11FEB2012 ' &
 515 GC0410 'Interactive Compilation '.
 516 GC0712 03 BACKGROUND-COLOR COB-COLOR-RED BLINK
 517 GC0712 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 518 GC0712 05 LINE 24 COL 01 PIC X(80) FROM WS-Output-Msg-TXT.
 519 *>
 520 *> LABELS
 521 *>
 522 03 BACKGROUND-COLOR COB-COLOR-BLACK
 523 FOREGROUND-COLOR COB-COLOR-CYAN HIGHLIGHT.
 524 GC0712 05 LINE 06 COL 02 VALUE 'Set/Clr Switches Via F1-F9; ' &
 525 GC0712 'Set Config Via F12; Enter Key ' &
 526 GC0712 'Compiles; Esc Quits'.
 527 GC0712 05 LINE 14 COL 02 VALUE 'Extra "cobc" Switches, If Any ' &
 528 GC0712 '("-save-temps=xxx" Prevents ' &
 529 GC0712 'Listings):'.
 530 GC0712 05 LINE 19 COL 02 VALUE 'Program Execution Arguments, ' &
 531 GC0712 'If Any:'.
 532 GC0712 03 BACKGROUND-COLOR COB-COLOR-BLACK
 533 GC0712 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 534 GC0712 05 LINE 06 COL 23 VALUE 'F1'.
 535 GC0712 05 COL 26 VALUE 'F9'.
 536 GC0712 05 COL 45 VALUE 'F12'.
 537 GC0712 05 COL 50 VALUE 'ENTER'.
 538 GC0712 05 COL 70 VALUE 'ESC'.
 539 *>
 540 *> TOP SECTION BACKGROUND
 541 *>
 542 03 BACKGROUND-COLOR COB-COLOR-BLACK
 543 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 544 GC0712 05 LINE 03 COL 62 VALUE 'Enter'.
 545 GC0712 05 LINE 04 COL 62 VALUE 'Esc'.
 546
 547 03 BACKGROUND-COLOR COB-COLOR-BLACK
 548 FOREGROUND-COLOR COB-COLOR-GREEN HIGHLIGHT.
 549 GC0712 05 LINE 04 COL 03 VALUE 'Folder: '.
 550 GC0712 05 LINE 03 COL 03 VALUE 'Filename: '.
 551
 552 GC0712 05 LINE 03 COL 67 VALUE ': Compile '.
 553 GC0712 05 LINE 04 COL 65 VALUE ': Quit '.
 554 *>
 555 *> TOP SECTION PROGRAM INFO
 556 *>

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-29

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 14
====== ==
 557 03 BACKGROUND-COLOR COB-COLOR-BLACK
 558 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 559 GC0712 05 LINE 03 COL 13 PIC X(66) FROM WS-Prog-File-Name-TXT.
 560 GC0712 05 LINE 04 COL 13 PIC X(66) FROM WS-Prog-Folder-TXT.
 561 *>
 562 *> MIDDLE LEFT SECTION F-KEYS
 563 *>
 564 03 BACKGROUND-COLOR COB-COLOR-BLACK
 565 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 566 GC0712 05 LINE 08 COL 03 VALUE 'F1'.
 567 GC0712 05 LINE 09 COL 03 VALUE 'F2'.
 568 GC0712 05 LINE 10 COL 03 VALUE 'F3'.
 569 GC0712 05 LINE 11 COL 03 VALUE 'F4'.
 570 GC0712 05 LINE 12 COL 03 VALUE 'F5'.
 571
 572 GC0712 05 LINE 08 COL 35 VALUE 'F6'.
 573 GC0712 05 LINE 09 COL 35 VALUE 'F7'.
 574 GC0712 05 LINE 10 COL 35 VALUE 'F8'.
 575 GC0712 05 LINE 11 COL 35 VALUE 'F9'.
 576 *>
 577 *> MIDDLE LEFT SECTION SWITCHES
 578 *>
 579 03 BACKGROUND-COLOR COB-COLOR-BLACK
 580 FOREGROUND-COLOR COB-COLOR-RED HIGHLIGHT.
 581 GC0712 05 LINE 08 COL 06 PIC X(1) FROM WS-CS-DEBUG-CHR.
 582 GC0712 05 LINE 09 COL 06 PIC X(1) FROM WS-CS-TRACEALL-CHR.
 583 GC0712 05 LINE 10 COL 06 PIC X(1) FROM WS-CS-LIBRARY-CHR.
 584 GC0712 05 LINE 11 COL 06 PIC X(1) FROM WS-CS-EXECUTE-CHR.
 585 GC0712 05 LINE 12 COL 06 PIC X(1) FROM WS-CS-LISTING-CHR.
 586
 587 GC0712 05 LINE 08 COL 38 PIC X(1) FROM WS-CS-NOFUNC-CHR.
 588 GC0712 05 LINE 09 COL 38 PIC X(1) FROM WS-CS-WARNALL-CHR.
 589 GC0712 05 LINE 10 COL 38 PIC X(1) FROM WS-CS-FREE-CHR.
 590 GC0712 05 LINE 11 COL 38 PIC X(1) FROM WS-CS-NOTRUNC-CHR.
 591 *>
 592 *> MIDDLE LEFT SECTION BACKGROUND
 593 *>
 594 03 BACKGROUND-COLOR COB-COLOR-BLACK
 595 FOREGROUND-COLOR COB-COLOR-GREEN HIGHLIGHT.
 596 GC0712 05 LINE 08 COL 07 VALUE 'Assume WITH DEBUGGING MODE'.
 597 GC0712 05 LINE 09 COL 07 VALUE 'Procedure+Statement Trace '.
 598 GC0712 05 LINE 10 COL 07 VALUE 'Make a Library ('.
 599 GC0712 05 COL 23 VALUE WS-OS-Lib-Type-CONST.
 600 GC0712 05 LINE 11 COL 07 VALUE 'Execute If Compilation OK '.
 601 GC0712 05 LINE 12 COL 07 VALUE 'Produce Full Listing '.
 602
 603 GC0712 05 LINE 08 COL 39 VALUE '"FUNCTION" Is Optional '.
 604 GC0712 05 LINE 09 COL 39 VALUE 'Enable All Warnings '.
 605 GC0712 05 LINE 10 COL 39 VALUE 'Source Is Free-Format '.
 606 GC0712 05 LINE 11 COL 39 VALUE 'No COMP/BINARY Truncation '.
 607 *>
 608 *> MIDDLE RIGHT SECTION Text
 609 *>
 610 03 BACKGROUND-COLOR COB-COLOR-BLACK

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-30

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 15
====== ==
 611 FOREGROUND-COLOR COB-COLOR-GREEN HIGHLIGHT.
 612 GC0712 05 LINE 08 COL 69 VALUE 'Current'.
 613 GC0712 05 LINE 09 COL 69 VALUE 'Config:'.
 614 *>
 615 *> MIDDLE RIGHT SECTION CONFIG FILE
 616 *>
 617 03 BACKGROUND-COLOR COB-COLOR-BLACK
 618 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 619 GC0712 05 LINE 10 COL 69 PIC X(10)
 620 GC0712 FROM WS-CS-Filename-TXT (WS-CS-Config-NUM).
 621 *>
 622 *> FREE-FORM OPTIONS FIELDS
 623 *>
 624 03 BACKGROUND-COLOR COB-COLOR-BLACK
 625 FOREGROUND-COLOR COB-COLOR-WHITE HIGHLIGHT.
 626 GC0712 05 LINE 16 COL 03 PIC X(76) USING WS-CS-Extra-H1-TXT.
 627 GC0712 05 LINE 17 COL 03 PIC X(76) USING WS-CS-Extra-H2-TXT.
 628 GC0712 05 LINE 21 COL 03 PIC X(76) USING WS-CS-Arg-H1-TXT.
 629 GC0712 05 LINE 22 COL 03 PIC X(76) USING WS-CS-Arg-H2-TXT.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-31

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 16
====== ==
 630 /
 631 PROCEDURE DIVISION.
 632 *>***
 633 *> Legend to procedure names: **
 634 *> **
 635 *> 00x-xxx All MAIN driver procedures **
 636 *> 0xx-xxx All GLOBAL UTILITY procedures **
 637 *> 1xx-xxx All INITIALIZATION procedures **
 638 *> 2xx-xxx All CORE PROCESSING procedures **
 639 *> 9xx-xxx All TERMINATION procedures **
 640 *>***
 641 DECLARATIVES.
 642 000-File-Error SECTION.
 643 USE AFTER STANDARD ERROR PROCEDURE ON F-Source-Code-FILE.
 644 COPY FileStat-Msgs
 645 REPLACING STATUS BY WS-FSM-Status-CD
 646 MSG BY WS-FSM-Msg-TXT.
 EVALUATE WS-FSM-Status-CD
 WHEN 00 MOVE 'SUCCESS ' TO WS-FSM-Msg-TXT
 WHEN 02 MOVE 'SUCCESS DUPLICATE ' TO WS-FSM-Msg-TXT
 WHEN 04 MOVE 'SUCCESS INCOMPLETE ' TO WS-FSM-Msg-TXT
 WHEN 05 MOVE 'SUCCESS OPTIONAL ' TO WS-FSM-Msg-TXT
 WHEN 07 MOVE 'SUCCESS NO UNIT ' TO WS-FSM-Msg-TXT
 WHEN 10 MOVE 'END OF FILE ' TO WS-FSM-Msg-TXT
 WHEN 14 MOVE 'OUT OF KEY RANGE ' TO WS-FSM-Msg-TXT
 WHEN 21 MOVE 'KEY INVALID ' TO WS-FSM-Msg-TXT
 WHEN 22 MOVE 'KEY EXISTS ' TO WS-FSM-Msg-TXT
 WHEN 23 MOVE 'KEY NOT EXISTS ' TO WS-FSM-Msg-TXT
 WHEN 30 MOVE 'PERMANENT ERROR ' TO WS-FSM-Msg-TXT
 WHEN 31 MOVE 'INCONSISTENT FILENAME ' TO WS-FSM-Msg-TXT
 WHEN 34 MOVE 'BOUNDARY VIOLATION ' TO WS-FSM-Msg-TXT
 WHEN 35 MOVE 'FILE NOT FOUND ' TO WS-FSM-Msg-TXT
 WHEN 37 MOVE 'PERMISSION DENIED ' TO WS-FSM-Msg-TXT
 WHEN 38 MOVE 'CLOSED WITH LOCK ' TO WS-FSM-Msg-TXT
 WHEN 39 MOVE 'CONFLICT ATTRIBUTE ' TO WS-FSM-Msg-TXT
 WHEN 41 MOVE 'ALREADY OPEN ' TO WS-FSM-Msg-TXT
 WHEN 42 MOVE 'NOT OPEN ' TO WS-FSM-Msg-TXT
 WHEN 43 MOVE 'READ NOT DONE ' TO WS-FSM-Msg-TXT
 WHEN 44 MOVE 'RECORD OVERFLOW ' TO WS-FSM-Msg-TXT
 WHEN 46 MOVE 'READ ERROR ' TO WS-FSM-Msg-TXT
 WHEN 47 MOVE 'INPUT DENIED ' TO WS-FSM-Msg-TXT
 WHEN 48 MOVE 'OUTPUT DENIED ' TO WS-FSM-Msg-TXT
 WHEN 49 MOVE 'I/O DENIED ' TO WS-FSM-Msg-TXT
 WHEN 51 MOVE 'RECORD LOCKED ' TO WS-FSM-Msg-TXT
 WHEN 52 MOVE 'END-OF-PAGE ' TO WS-FSM-Msg-TXT
 WHEN 57 MOVE 'I/O LINAGE ' TO WS-FSM-Msg-TXT
 WHEN 61 MOVE 'FILE SHARING FAILURE ' TO WS-FSM-Msg-TXT
 WHEN 91 MOVE 'FILE NOT AVAILABLE ' TO WS-FSM-Msg-TXT
 END-EVALUATE.
 647 MOVE SPACES TO WS-Output-Msg-TXT
 648 IF WS-FSM-Status-CD = 35
 649 DISPLAY
 650 'File not found: "'
 651 TRIM(WS-File-Name-TXT,TRAILING)

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-32

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 17
====== ==
 652 '"'
 653 ELSE
 654 DISPLAY
 655 'Error accessing file: "'
 656 TRIM(WS-File-Name-TXT,TRAILING)
 657 '"'
 658 END-IF
 659 GOBACK
 660 .
 661 END DECLARATIVES.
 662
 663 000-Main SECTION.
 664 PERFORM 100-Initialization
 665 GC0609 SET WS-RS-Not-Complete-BOOL TO TRUE
 666 GC0609 PERFORM UNTIL WS-RS-Complete-BOOL
 667 GC0609 PERFORM 200-Let-User-Set-Switches
 668 GC0609 PERFORM 210-Run-Compiler
 669 GC0410 IF (WS-RS-Compile-OK-BOOL OR WS-RS-Compile-OK-Warn-BOOL)
 670 GC0712 AND (WS-CS-LISTING-CHR > SPACE)
 671 GC0712 DISPLAY S-Blank-SCR
 672 GC0410 PERFORM 220-Make-Listing
 673 GC0410 END-IF
 674 GC0709 IF (WS-CS-EXECUTE-CHR NOT = SPACES)
 675 GC0709 AND (WS-RS-Output-File-Avail-BOOL)
 676 GC0609 PERFORM 230-Run-Program
 677 GC0609 END-IF
 678 GC0712 PERFORM 250-Autoload-Listing
 679 GC0609 END-PERFORM
 680 PERFORM 900-Terminate
 681 * -- Control will NOT return
 682 .
 683 * -- Control will NOT return

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-33

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 18
====== ==
 684 /
 685 *>***
 686 *> Perform all program-wide initialization operations **
 687 *>***
 688 100-Initialization SECTION.
 689 *>***
 690 *> Make sure full screen-handling is in effect **
 691 *>***
 692 SET ENVIRONMENT 'COB_SCREEN_EXCEPTIONS' TO 'Y'
 693 SET ENVIRONMENT 'COB_SCREEN_ESC' TO 'Y'
 694 *>***
 695 *> Get GCic Compilation Date/Time **
 696 *>***
 697 MOVE WHEN-COMPILED (1:12) TO WS-OC-Compile-DT
 698 INSPECT WS-OC-Compile-DT
 699 REPLACING ALL '/' BY ':'
 700 AFTER INITIAL SPACE
 701 *>***
 702 *> Convert WS-CS-All-Switches-TXT to Needed Alphanumeric Values **
 703 *>***
 704 INSPECT WS-CS-All-Switches-TXT
 705 REPLACING ALL '0' BY SPACE
 706 ALL '1' BY SELCHAR
 707 *>***
 708 *> Process filename (the only command-line argument) **
 709 *>***
 710 GC0712 ACCEPT WS-Cmd-Args-TXT FROM COMMAND-LINE
 711 GC0712 MOVE 1 TO WS-Cmd-SUB
 712 GC0712 IF WS-Cmd-Args-TXT(WS-Cmd-SUB:1) = '"' OR "'"
 713 GC0712 MOVE WS-Cmd-Args-TXT(WS-Cmd-SUB:1)
 714 GC0712 TO WS-Cmd-End-Quote-CHR
 715 GC0712 ADD 1 TO WS-Cmd-SUB
 716 GC0712 UNSTRING WS-Cmd-Args-TXT
 717 GC0712 DELIMITED BY WS-Cmd-End-Quote-CHR
 718 GC0712 INTO WS-File-Name-TXT
 719 GC0712 WITH POINTER WS-Cmd-SUB
 720 GC0712 ELSE
 721 GC0712 UNSTRING WS-Cmd-Args-TXT
 722 GC0712 DELIMITED BY ALL SPACES
 723 GC0712 INTO WS-File-Name-TXT
 724 GC0712 WITH POINTER WS-Cmd-SUB
 725 GC0712 END-IF
 726 IF WS-File-Name-TXT = SPACES
 727 GC0712 DISPLAY 'No program filename was specified'
 728 PERFORM 900-Terminate
 729 * ------ Control will NOT return
 730 END-IF
 731 *>***
 732 *> Determine if 'Make A Library' feature should be forced 'ON' **
 733 *>***
 734 PERFORM 240-Find-LINKAGE-SECTION
 735 *>***
 736 *> Split 'WS-File-Name-TXT' into 'WS-Prog-Folder-TXT' and **
 737 *> 'WS-Prog-File-Name-TXT' **

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-34

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 19
====== ==
 738 *>***
 739 GC0909 IF WS-OS-Cygwin-BOOL AND WS-File-Name-TXT (2:1) = ':'
 740 GC0712 MOVE '\' TO WS-OS-Dir-CHR
 741 GC0909 END-IF
 742 GC0712 MOVE LENGTH(WS-File-Name-TXT) TO WS-I-SUB
 743 GC0712 PERFORM UNTIL WS-I-SUB = 0
 744 GC0712 OR WS-FN-CHR (WS-I-SUB) = WS-OS-Dir-CHR
 745 SUBTRACT 1 FROM WS-I-SUB
 746 END-PERFORM
 747 IF WS-I-SUB = 0
 748 MOVE SPACES TO WS-Prog-Folder-TXT
 749 MOVE WS-File-Name-TXT TO WS-Prog-File-Name-TXT
 750 ELSE
 751 MOVE '*' TO WS-FN-CHR (WS-I-SUB)
 752 UNSTRING WS-File-Name-TXT DELIMITED BY '*'
 753 INTO WS-Prog-Folder-TXT
 754 WS-Prog-File-Name-TXT
 755 GC0712 MOVE WS-OS-Dir-CHR TO WS-FN-CHR (WS-I-SUB)
 756 END-IF
 757 IF WS-Prog-Folder-TXT = SPACES
 758 ACCEPT WS-Prog-Folder-TXT FROM ENVIRONMENT 'CD'
 759 GC0909 ELSE
 760 GC0909 CALL 'CBL_CHANGE_DIR'
 761 GC0909 USING TRIM(WS-Prog-Folder-TXT,TRAILING)
 762 END-IF
 763 GC0909 IF WS-OS-Cygwin-BOOL AND WS-File-Name-TXT (2:1) = ':'
 764 GC0712 MOVE '/' TO WS-OS-Dir-CHR
 765 GC0909 END-IF
 766 *>***
 767 *> Split 'WS-Prog-File-Name-TXT' into 'WS-Pgm-Nm-TXT' & **
 768 *> 'WS-Prog-Extension-TXT' **
 769 *>***
 770 GC0712 MOVE LENGTH(WS-Prog-File-Name-TXT) TO WS-I-SUB
 771 GC0712 PERFORM UNTIL WS-I-SUB = 0
 772 GC0712 OR WS-PFN-CHR (WS-I-SUB) = '.'
 773 GC0712 SUBTRACT 1 FROM WS-I-SUB
 774 GC0712 END-PERFORM
 775 GC0712 IF WS-I-SUB = 0
 776 GC0712 MOVE WS-Prog-File-Name-TXT TO WS-Pgm-Nm-TXT
 777 GC0712 MOVE SPACES TO WS-Prog-Extension-TXT
 778 GC0712 ELSE
 779 GC0712 MOVE '*' TO WS-PFN-CHR (WS-I-SUB)
 780 GC0712 UNSTRING WS-Prog-File-Name-TXT DELIMITED BY '*'
 781 GC0712 INTO WS-Pgm-Nm-TXT
 782 GC0712 WS-Prog-Extension-TXT
 783 GC0712 MOVE '.' TO WS-PFN-CHR (WS-I-SUB)
 784 GC0712 END-IF
 785 *>***
 786 *> Build initial Line 24 Message **
 787 *>***
 788 GC0909 MOVE ALL LD-Horiz-Line TO WS-Horizontal-Line-TXT.
 789 GC0410 MOVE CONCATENATE(' GCic for '
 790 GC0410 TRIM(WS-OS-Type-TXT(WS-OS-Type-CD),Trailing)
 791 GC0712 ' Copyright (C) 2009 - 2013, Gary L. '

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-35

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 20
====== ==
 792 GC0410 'Cutler, GPL')
 793 GC0410 TO WS-Output-Msg-TXT.
 794 GC0909 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-36

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 21
====== ==
 795 /
 796 *>***
 797 *> Show the user the current switch settings and allow them to **
 798 *> be changed. **
 799 *>***
 800 200-Let-User-Set-Switches SECTION.
 801 SET WS-RS-Switch-Changes-BOOL TO TRUE
 802 PERFORM UNTIL WS-RS-No-Switch-Changes-BOOL
 803 ACCEPT S-Switches-SCR
 804 IF COB-CRT-STATUS > 0
 805 EVALUATE COB-CRT-STATUS
 806 WHEN COB-SCR-F1
 807 IF WS-CS-DEBUG-CHR = SPACE
 808 GC0712 MOVE SELCHAR TO WS-CS-DEBUG-CHR
 809 ELSE
 810 MOVE ' ' TO WS-CS-DEBUG-CHR
 811 END-IF
 812 GC0712 WHEN COB-SCR-F2
 813 GC0712 IF WS-CS-TRACEALL-CHR = SPACE
 814 GC0712 MOVE SELCHAR TO WS-CS-TRACEALL-CHR
 815 GC0712 ELSE
 816 GC0712 MOVE ' ' TO WS-CS-TRACEALL-CHR
 817 GC0712 END-IF
 818 WHEN COB-SCR-F3
 819 GC0712 IF WS-CS-LIBRARY-CHR = SPACE
 820 GC0712 MOVE SELCHAR TO WS-CS-LIBRARY-CHR
 821 ELSE
 822 GC0712 MOVE ' ' TO WS-CS-LIBRARY-CHR
 823 END-IF
 824 WHEN COB-SCR-F4
 825 IF WS-CS-EXECUTE-CHR = SPACE
 826 GC0712 MOVE SELCHAR TO WS-CS-EXECUTE-CHR
 827 ELSE
 828 MOVE ' ' TO WS-CS-EXECUTE-CHR
 829 END-IF
 830 GC0712 WHEN COB-SCR-F5
 831 GC0712 IF WS-CS-LISTING-CHR = SPACE
 832 GC0712 MOVE SELCHAR TO WS-CS-LISTING-CHR
 833 GC0712 ELSE
 834 GC0712 MOVE ' ' TO WS-CS-LISTING-CHR
 835 GC0712 END-IF
 836 GC0712 WHEN COB-SCR-F6
 837 GC0712 IF WS-CS-NOFUNC-CHR = SPACE
 838 GC0712 MOVE SELCHAR TO WS-CS-NOFUNC-CHR
 839 GC0712 ELSE
 840 GC0712 MOVE ' ' TO WS-CS-NOFUNC-CHR
 841 GC0712 END-IF
 842 GC0712 WHEN COB-SCR-F7
 843 GC0712 IF WS-CS-WARNALL-CHR = SPACE
 844 GC0712 MOVE SELCHAR TO WS-CS-WARNALL-CHR
 845 GC0712 ELSE
 846 GC0712 MOVE ' ' TO WS-CS-WARNALL-CHR
 847 GC0712 END-IF
 848 GC0712 WHEN COB-SCR-F8

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-37

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 22
====== ==
 849 GC0712 IF WS-CS-FREE-CHR = SPACE
 850 GC0712 MOVE SELCHAR TO WS-CS-FREE-CHR
 851 GC0712 ELSE
 852 GC0712 MOVE ' ' TO WS-CS-FREE-CHR
 853 GC0712 END-IF
 854 GC0712 WHEN COB-SCR-F9
 855 GC0712 IF WS-CS-NOTRUNC-CHR = SPACE
 856 GC0712 MOVE SELCHAR TO WS-CS-NOTRUNC-CHR
 857 GC0712 ELSE
 858 GC0712 MOVE ' ' TO WS-CS-NOTRUNC-CHR
 859 GC0712 END-IF
 860 WHEN COB-SCR-ESC
 861 PERFORM 900-Terminate
 862 * ------------------ Control will NOT return
 863 GC0712 WHEN COB-SCR-F12
 864 GC0712 ADD 1 TO WS-CS-Config-NUM
 865 GC0712 IF WS-CS-Config-NUM > 7
 866 GC0712 MOVE 1 TO WS-CS-Config-NUM
 867 GC0712 END-IF
 868 WHEN OTHER
 869 MOVE 'An unsupported key was pressed'
 870 TO WS-Output-Msg-TXT
 871 END-EVALUATE
 872 ELSE
 873 SET WS-RS-No-Switch-Changes-BOOL TO TRUE
 874 END-IF
 875 END-PERFORM
 876 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-38

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 23
====== ==
 877 /
 878 *>***
 879 *> Run the compiler using the switch settings we've prepared. **
 880 *>***
 881 210-Run-Compiler SECTION.
 882 MOVE SPACES TO WS-Cmd-TXT
 883 WS-Cobc-Cmd-TXT
 884 WS-Output-Msg-TXT
 885 DISPLAY S-Switches-SCR
 886 MOVE 1 TO WS-I-SUB
 887 GC0712 MOVE LOWER-CASE(WS-CS-Filename-TXT (WS-CS-Config-NUM))
 888 GC0712 TO WS-Config-Fn-TXT
 889 *>***
 890 *> Build the 'cobc' command **
 891 *>***
 892 GC0909 MOVE SPACES TO WS-Cobc-Cmd-TXT
 893 GC0909 STRING 'cobc -v -std='
 894 GC0909 TRIM(WS-Config-Fn-TXT,TRAILING)
 895 GC0909 ' '
 896 GC0909 INTO WS-Cobc-Cmd-TXT
 897 GC0909 WITH POINTER WS-I-SUB
 898 IF WS-CS-LIBRARY-CHR NOT = ' '
 899 STRING '-m '
 900 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 901 WITH POINTER WS-I-SUB
 902 ELSE
 903 STRING '-x '
 904 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 905 WITH POINTER WS-I-SUB
 906 END-IF
 907 IF WS-CS-DEBUG-CHR NOT = ' '
 908 STRING '-fdebugging-line '
 909 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 910 WITH POINTER WS-I-SUB
 911 END-IF
 912 IF WS-CS-NOTRUNC-CHR NOT = ' '
 913 STRING '-fnotrunc '
 914 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 915 WITH POINTER WS-I-SUB
 916 END-IF
 917 IF WS-CS-TRACEALL-CHR NOT = ' '
 918 GC0809 STRING '-ftraceall '
 919 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 920 WITH POINTER WS-I-SUB
 921 END-IF
 922 GC0712 IF WS-CS-NOFUNC-CHR NOT = ' '
 923 GC0712 STRING '-fintrinsic=all '
 924 GC0712 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 925 GC0712 WITH POINTER WS-I-SUB
 926 GC0712 END-IF
 927 GC0712 IF WS-CS-WARNALL-CHR NOT = ' '
 928 GC0712 STRING '-Wall '
 929 GC0712 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 930 GC0712 WITH POINTER WS-I-SUB

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-39

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 24
====== ==
 931 GC0712 END-IF
 932 GC0712 IF WS-CS-FREE-CHR NOT = ' '
 933 GC0712 STRING '-free '
 934 GC0712 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 935 GC0712 WITH POINTER WS-I-SUB
 936 GC0712 ELSE
 937 GC0712 STRING '-fixed '
 938 GC0712 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 939 GC0712 WITH POINTER WS-I-SUB
 940 GC0712 END-IF
 941
 942 GC0712 MOVE 0 TO WS-Tally-QTY
 943 GC0712 INSPECT WS-CS-Extra-TXT
 944 GC0712 TALLYING WS-Tally-QTY FOR ALL '-save-temps'
 945 GC0712 IF WS-CS-LISTING-CHR > SPACE
 946 GC0712 AND WS-Tally-QTY > 0
 947 GC0712 MOVE SPACE TO WS-CS-LISTING-CHR *> Can't generate listing if -save-temps used
 948 GC0712 END-IF
 949 GC0712 IF WS-CS-LISTING-CHR > SPACE
 950 GC1010 STRING '-save-temps '
 951 GC1010 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 952 GC1010 WITH POINTER WS-I-SUB
 953 GC1010 END-IF
 954
 955 GC0709 IF WS-CS-Extra-TXT > SPACES
 956 GC0709 STRING ' '
 957 GC0709 TRIM(WS-CS-Extra-TXT,TRAILING)
 958 GC0709 ' '
 959 GC0709 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 960 GC0709 WITH POINTER WS-I-SUB
 961 GC0709 END-IF
 962 GC0909 STRING TRIM(WS-Prog-File-Name-TXT,TRAILING)
 963 GC0909 DELIMITED SIZE INTO WS-Cobc-Cmd-TXT
 964 GC0909 WITH POINTER WS-I-SUB
 965 *>***
 966 *> Prepare the compilation listing file **
 967 *>***
 968 GC1113 MOVE CONCATENATE(TRIM(WS-Pgm-Nm-TXT,Trailing),'.gclst')
 969 GC0712 TO WS-Listing-Filename-TXT
 970 GC0712 CALL 'CBL_DELETE_FILE' USING WS-Listing-Filename-TXT
 971 *>***
 972 *> Now execute the 'cobc' command **
 973 *>***
 974 GC0410 MOVE ' Compiling...' TO WS-Output-Msg-TXT
 975 GC0410 DISPLAY S-Switches-SCR
 976 GC0609 SET WS-RS-Output-File-Avail-BOOL TO TRUE
 977 MOVE SPACES TO WS-Cmd-TXT
 978 STRING TRIM(WS-Cobc-Cmd-TXT,TRAILING)
 979 GC0712 ' >' WS-Listing-Filename-TXT
 980 GC0712 ' 2>&1'
 981 DELIMITED SIZE
 982 INTO WS-Cmd-TXT
 983 DEBUG D DISPLAY WS-Cmd-TXT UPON SYSERR
 984 CALL 'SYSTEM' USING TRIM(WS-Cmd-TXT,TRAILING)

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-40

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 25
====== ==
 985 GC0712 OPEN EXTEND F-Cobc-Output-FILE
 986 GC0712 WRITE F-Cobc-Output-REC FROM SPACES
 987 GC0712 IF RETURN-CODE = 0
 988 GC0712 SET WS-RS-Compile-OK-BOOL TO TRUE
 989 GC0712 MOVE ' Compilation Was Successful' TO WS-Output-Msg-TXT
 990 GC0712 MOVE CONCATENATE('GNU COBOL',WS-Output-Msg-TXT)
 991 GC0712 TO F-Cobc-Output-REC
 992 GC0712 WRITE F-Cobc-Output-REC
 993 GC0712 SET WS-RS-Complete-BOOL TO TRUE
 994 GC0712 ELSE
 995 GC0712 SET WS-RS-Compile-Failed-BOOL TO TRUE
 996 GC0712 MOVE CONCATENATE(' Compilation Failed - See ',
 997 GC0712 TRIM(WS-Listing-Filename-TXT,Trailing))
 998 GC0712 TO WS-Output-Msg-TXT
 999 GC0712 MOVE 'GNU COBOL Compilation HAS FAILED - See Above'
 1000 GC0712 TO F-Cobc-Output-REC
 1001 GC0712 WRITE F-Cobc-Output-REC
 1002 GC0712 END-IF
 1003 GC0712 CLOSE F-Cobc-Output-FILE
 1004 GC0712 DISPLAY S-Switches-SCR
 1005 GC0712 CALL 'C$SLEEP' USING 2
 1006 GC0712 MOVE SPACES TO WS-Output-Msg-TXT
 1007 IF WS-RS-Compile-Failed-BOOL
 1008 GC0712 PERFORM 250-Autoload-Listing
 1009 PERFORM 900-Terminate
 1010 *> ----- Control will not return
 1011 END-IF
 1012 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-41

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 26
====== ==
 1013 /
 1014 *>***
 1015 *> Generate a source + xref listing using 'LISTING' subroutine **
 1016 *>***
 1017 GC0410 220-Make-Listing SECTION.
 1018 GC0410 MOVE ' Generating listing...' TO WS-Output-Msg-TXT
 1019 GC0410 DISPLAY S-Switches-SCR
 1020 GC0410 MOVE 0 TO RETURN-CODE
 1021 *>***
 1022 *> Create the listing **
 1023 *>***
 1024 GC0410 MOVE SPACES TO WS-Output-Msg-TXT
 1025 GC0410 CALL 'LISTING' USING WS-Listing-Filename-TXT
 1026 GC0712 WS-File-Name-TXT
 1027 GC0712 WS-OS-Type-CD
 1028 GC0410 ON EXCEPTION
 1029 GC0410 MOVE ' LISTING module is not available'
 1030 GC0410 TO WS-Output-Msg-TXT
 1031 GC0410 MOVE 1 TO RETURN-CODE
 1032 GC0410 END-CALL
 1033 GC0410 IF RETURN-CODE = 0
 1034 GC0712 MOVE ' Source+Xref listing generated '
 1035 GC0712 TO WS-Output-Msg-TXT
 1036 GC0410 END-IF
 1037 GC0712 DISPLAY S-Switches-SCR
 1038 GC0712 CALL 'C$SLEEP' USING 2
 1039 GC0712 PERFORM 250-Autoload-Listing
 1040 GC0410 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-42

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 27
====== ==
 1041 /
 1042 *>***
 1043 *> Run the compiled program **
 1044 *>***
 1045 230-Run-Program SECTION.
 1046 GC0909 MOVE SPACES TO WS-Cmd-TXT
 1047 GC0909 MOVE 1 TO WS-I-SUB
 1048 *>***
 1049 *> If necessary, start with 'cobcrun' command **
 1050 *>***
 1051 GC0712 IF WS-CS-LIBRARY-CHR NOT = ' '
 1052 STRING 'cobcrun ' DELIMITED SIZE
 1053 INTO WS-Cmd-TXT
 1054 WITH POINTER WS-I-SUB
 1055 END-IF
 1056 *>***
 1057 *> Add any necessary path prefix **
 1058 *>***
 1059 GC0712 SET WS-RS-Double-Quote-Used-BOOL TO FALSE
 1060 IF WS-Prog-Folder-TXT NOT = SPACES
 1061 GC0909 IF WS-OS-Cygwin-BOOL AND WS-Prog-Folder-TXT (2:1) = ':'
 1062 GC0909 STRING '/cygdrive/'
 1063 GC0909 INTO WS-Cmd-TXT
 1064 GC0909 WITH POINTER WS-I-SUB
 1065 GC0909 STRING LOWER-CASE(WS-Prog-Folder-TXT (1:1))
 1066 GC0909 INTO WS-Cmd-TXT
 1067 GC0909 WITH POINTER WS-I-SUB
 1068 GC0909 PERFORM
 1069 GC0909 VARYING WS-J-SUB FROM 3 BY 1
 1070 GC0909 UNTIL WS-J-SUB > LENGTH(TRIM(WS-Prog-Folder-TXT))
 1071 GC0909 IF WS-Prog-Folder-TXT (WS-J-SUB:1) = '\'
 1072 GC0909 STRING '/'
 1073 GC0909 INTO WS-Cmd-TXT
 1074 GC0909 WITH POINTER WS-I-SUB
 1075 GC0909 ELSE
 1076 GC0909 STRING WS-Prog-Folder-TXT (WS-J-SUB:1)
 1077 GC0909 INTO WS-Cmd-TXT
 1078 GC0909 WITH POINTER WS-I-SUB
 1079 GC0909 END-IF
 1080 GC0909 END-PERFORM
 1081 GC0909 ELSE
 1082 GC0410 STRING '"' TRIM(WS-Prog-Folder-TXT,TRAILING)
 1083 GC0909 INTO WS-Cmd-TXT
 1084 GC0909 WITH POINTER WS-I-SUB
 1085 GC0712 SET WS-RS-Double-Quote-Used-BOOL TO TRUE
 1086 GC0909 END-IF
 1087 GC0712 STRING WS-OS-Dir-CHR
 1088 GC0909 INTO WS-Cmd-TXT
 1089 GC0909 WITH POINTER WS-I-SUB
 1090 GC0909 ELSE
 1091 GC0909 IF WS-OS-Cygwin-BOOL OR WS-OS-UNIX-BOOL
 1092 GC0909 STRING './'
 1093 GC0909 INTO WS-Cmd-TXT
 1094 GC0909 WITH POINTER WS-I-SUB

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-43

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 28
====== ==
 1095 GC0909 END-IF
 1096 END-IF
 1097 *>***
 1098 *> Insert program filename **
 1099 *>***
 1100 GC0909 STRING TRIM(WS-Pgm-Nm-TXT,TRAILING)
 1101 GC0909 INTO WS-Cmd-TXT
 1102 GC0909 WITH POINTER WS-I-SUB
 1103 *>***
 1104 *> Insert proper extension **
 1105 *>***
 1106 GC0712 IF WS-CS-LIBRARY-CHR = ' '
 1107 GC0712 IF WS-OS-Exe-Ext-CONST > ' '
 1108 GC0712 STRING WS-OS-Exe-Ext-CONST DELIMITED SPACE
 1109 GC0712 INTO WS-Cmd-TXT
 1110 GC0712 WITH POINTER WS-I-SUB
 1111 GC0712 END-IF
 1112 GC0712 ELSE
 1113 GC0712 IF WS-OS-Lib-Ext-CONST > ' '
 1114 GC0712 STRING WS-OS-Lib-Ext-CONST DELIMITED SPACE
 1115 GC0712 INTO WS-Cmd-TXT
 1116 GC0712 WITH POINTER WS-I-SUB
 1117 GC0712 END-IF
 1118 GC0712 END-IF
 1119 GC0712 IF WS-RS-Double-Quote-Used-BOOL
 1120 GC0712 STRING '"' DELIMITED SIZE
 1121 GC0712 INTO WS-Cmd-TXT
 1122 GC0712 WITH POINTER WS-I-SUB
 1123 GC0712 END-IF
 1124 IF WS-CS-Args-TXT NOT = SPACES
 1125 GC0809 STRING ' ' TRIM(WS-CS-Args-TXT,TRAILING)
 1126 INTO WS-Cmd-TXT
 1127 WITH POINTER WS-I-SUB
 1128 END-IF
 1129 IF WS-OS-Windows-BOOL
 1130 GC0712 STRING '&&pause'
 1131 INTO WS-Cmd-TXT
 1132 WITH POINTER WS-I-SUB
 1133 ELSE
 1134 GC0712 STRING ';echo "Press ENTER to close...";read'
 1135 INTO WS-Cmd-TXT
 1136 WITH POINTER WS-I-SUB
 1137 END-IF
 1138 DEBUG D DISPLAY WS-Cmd-TXT UPON SYSERR
 1139 *>***
 1140 *> Run the program **
 1141 *>***
 1142 GC0909 DISPLAY S-Blank-SCR
 1143 CALL 'SYSTEM' USING TRIM(WS-Cmd-TXT,TRAILING)
 1144 GC0712 MOVE SPACES TO WS-Output-Msg-TXT
 1145 PERFORM 900-Terminate
 1146 * -- Control will NOT return
 1147 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-44

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 29
====== ==
 1148 /
 1149 *>***
 1150 *> Determine if the program being compiled is a MAIN program **
 1151 *>***
 1152 240-Find-LINKAGE-SECTION SECTION.
 1153 OPEN INPUT F-Source-Code-FILE
 1154 GC0712 MOVE ' ' TO WS-CS-LIBRARY-CHR
 1155 SET WS-RS-More-To-1st-Prog-BOOL TO TRUE
 1156 PERFORM UNTIL WS-RS-1st-Prog-Complete-BOOL
 1157 READ F-Source-Code-FILE AT END
 1158 CLOSE F-Source-Code-FILE
 1159 EXIT SECTION
 1160 END-READ
 1161 GC0712 CALL 'CHECKSRC'
 1162 GC0712 USING BY CONTENT F-Source-Code-REC
 1163 GC0712 BY REFERENCE WS-RS-Source-Record-Type-CHR
 1164 IF WS-RS-Source-Rec-Ident-BOOL
 1165 SET WS-RS-1st-Prog-Complete-BOOL TO TRUE
 1166 END-IF
 1167 END-PERFORM
 1168 GC0712 SET WS-RS-Source-Rec-Ignored-BOOL TO TRUE
 1169 PERFORM UNTIL WS-RS-Source-Rec-Linkage-BOOL
 1170 OR WS-RS-Source-Rec-Ident-BOOL
 1171 READ F-Source-Code-FILE AT END
 1172 CLOSE F-Source-Code-FILE
 1173 EXIT SECTION
 1174 END-READ
 1175 GC0712 CALL 'CHECKSRC'
 1176 GC0712 USING BY CONTENT F-Source-Code-REC
 1177 GC0712 BY REFERENCE WS-RS-Source-Record-Type-CHR
 1178 END-PERFORM
 1179 CLOSE F-Source-Code-FILE
 1180 IF WS-RS-Source-Rec-Linkage-BOOL
 1181 GC0712 MOVE SELCHAR TO WS-CS-LIBRARY-CHR
 1182 END-IF
 1183 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-45

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 30
====== ==
 1184 /
 1185 GC0712*>***
 1186 GC0712*> Attempt to open the listing file as a command. This will - **
 1187 GC1113*> if the user has associated filetype/extension 'gclst' with **
 1188 GC0712*> an application - invoke the appropriate application to **
 1189 GC0712*> allow the user to view the listing. **
 1190 GC0712*>***'
 1191 GC0712 250-Autoload-Listing SECTION.
 1192 GC0712 EVALUATE TRUE
 1193 GC0712 WHEN WS-OS-Windows-BOOL OR WS-OS-Cygwin-BOOL
 1194 GC0712 MOVE SPACES TO WS-Cmd-TXT
 1195 GC0712 STRING
 1196 GC0712 'cmd /c '
 1197 GC0712 TRIM(WS-Listing-Filename-TXT,TRAILING)
 1198 GC0712 DELIMITED SIZE INTO WS-Cmd-TXT
 1199 GC0712 CALL 'SYSTEM' USING TRIM(WS-Cmd-TXT,TRAILING)
 1200 GC0712 WHEN WS-OS-OSX-BOOL
 1201 GC0712 MOVE SPACES TO WS-Cmd-TXT
 1202 GC0712 STRING
 1203 GC0712 'open -t '
 1204 GC0712 TRIM(WS-Listing-Filename-TXT,TRAILING)
 1205 GC0712 DELIMITED SIZE INTO WS-Cmd-TXT
 1206 GC0712 CALL 'SYSTEM' USING TRIM(WS-Cmd-TXT,TRAILING)
 1207 GC0712 END-EVALUATE
 1208 GC0712*> **
 1209 GC0712*> ** Since we had to do our own '-save-temps' when we **
 1210 GC0712*> ** compiled (in order to generate the cross-reference **
 1211 GC0712*> ** listing) we now need to clean up after ourselves. **
 1212 GC0712*> **
 1213 GC1112 DISPLAY S-Blank-SCR
 1214 GC0712 IF WS-OS-Windows-BOOL
 1215 GC0712 MOVE CONCATENATE('del ',TRIM(WS-Pgm-Nm-TXT,TRAILING))
 1216 GC0712 TO WS-Cmd-TXT
 1217 GC0712 ELSE
 1218 GC0712 MOVE CONCATENATE('rm ',TRIM(WS-Pgm-Nm-TXT,TRAILING))
 1219 GC0712 TO WS-Cmd-TXT
 1220 GC0712 END-IF
 1221 GC0712 CALL 'SYSTEM'
 1222 GC0712 USING CONCATENATE(TRIM(WS-Cmd-TXT,TRAILING),'.c')
 1223 GC0712 CALL 'SYSTEM'
 1224 GC0712 USING CONCATENATE(TRIM(WS-Cmd-TXT,TRAILING),'.c.h')
 1225 GC0712 CALL 'SYSTEM'
 1226 GC0712 USING CONCATENATE(TRIM(WS-Cmd-TXT,TRAILING),'.c.l*.h')
 1227 GC0712 CALL 'SYSTEM'
 1228 GC0712 USING CONCATENATE(TRIM(WS-Cmd-TXT,TRAILING),'.i')
 1229 GC0712 CALL 'SYSTEM'
 1230 GC0712 USING CONCATENATE(TRIM(WS-Cmd-TXT,TRAILING),'.o')
 1231
 1232 GC0712 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-46

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 31
====== ==
 1233 /
 1234 *>***
 1235 *> Display a message and halt the program **
 1236 *>***
 1237 900-Terminate SECTION.
 1238 GC0909 IF WS-Output-Msg-TXT > SPACES
 1239 GC0909 DISPLAY S-Switches-SCR
 1240 GC0909 CALL 'C$SLEEP' USING 2
 1241 GC0909 END-IF
 1242 DISPLAY S-Blank-SCR
 1243 STOP RUN
 1244 .
 1245
 1246 END PROGRAM GCic.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-47

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 32
====== ==
 1247 /
 1248 IDENTIFICATION DIVISION.
 1249 PROGRAM-ID. CHECKSRC.
 1250 *>***
 1251 *> This subprogram will scan a line of source code it is given **
 1252 *> looking for 'LINKAGE SECTION' or 'IDENTIFICATION DIVISION'. **
 1253 *> **
 1254 *> ****NOTE**** ****NOTE**** ****NOTE**** ****NOTE*** **
 1255 *> **
 1256 *> These two strings must be found IN THEIR ENTIRETY within **
 1257 *> the 1st 80 columns of program source records, and cannot **
 1258 *> follow either a '*>' sequence OR a '*' in col 7. **
 1259 *>***
 1260 *> DATE CHANGE DESCRIPTION **
 1261 *> ====== == **
 1262 *> GC0809 Initial coding. **
 1263 *>***
 1264 ENVIRONMENT DIVISION.
 1265 CONFIGURATION SECTION.
 1266 REPOSITORY.
 1267 FUNCTION ALL INTRINSIC.
 1268 DATA DIVISION.
 1269 WORKING-STORAGE SECTION.
 1270 01 WS-Compressed-Src-TXT.
 1271 05 WS-CS-CHR OCCURS 80 TIMES
 1272 PIC X(1).
 1273
 1274 01 WS-Runtime-Switches-TXT.
 1275 05 WS-RS-Found-SPACE-CHR PIC X(1).
 1276 88 WS-RS-Skipping-SPACE-BOOL VALUE 'Y'.
 1277 88 WS-RS-Not-Skipping-SPACE-BOOL VALUE 'N'.
 1278
 1279 01 WS-I-SUB USAGE BINARY-CHAR.
 1280
 1281 01 WS-J-SUB USAGE BINARY-CHAR.
 1282 LINKAGE SECTION.
 1283 01 L-Argument-1-TXT.
 1284 02 L-A1-CHR OCCURS 80 TIMES
 1285 PIC X(1).
 1286
 1287 01 L-Argument-2-CHR PIC X(1).
 1288 88 L-A2-LINKAGE-SECTION-BOOL VALUE 'L'.
 1289 88 L-A2-IDENT-DIVISION-BOOL VALUE 'I'.
 1290 88 L-A2-Nothing-Special-BOOL VALUE ' '.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-48

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 33
====== ==
 1291 /
 1292 GC0712 PROCEDURE DIVISION USING BY VALUE L-Argument-1-TXT
 1293 GC0712 BY REFERENCE L-Argument-2-CHR.
 1294 000-Main SECTION.
 1295 SET L-A2-Nothing-Special-BOOL TO TRUE
 1296 IF L-A1-CHR (7) = '*'
 1297 GOBACK
 1298 END-IF
 1299 .
 1300 *>
 1301 *> Compress multiple consecutive spaces
 1302 *>
 1303 SET WS-RS-Not-Skipping-SPACE-BOOL TO TRUE
 1304 MOVE 0 TO WS-J-SUB
 1305 MOVE SPACES TO WS-Compressed-Src-TXT
 1306 PERFORM VARYING WS-I-SUB FROM 1 BY 1
 1307 UNTIL WS-I-SUB > 80
 1308 IF L-A1-CHR (WS-I-SUB) = SPACE
 1309 IF WS-RS-Not-Skipping-SPACE-BOOL
 1310 ADD 1 TO WS-J-SUB
 1311 MOVE UPPER-CASE(L-A1-CHR (WS-I-SUB))
 1312 TO WS-CS-CHR (WS-J-SUB)
 1313 SET WS-RS-Skipping-SPACE-BOOL TO TRUE
 1314 END-IF
 1315 ELSE
 1316 SET WS-RS-Not-Skipping-SPACE-BOOL TO TRUE
 1317 ADD 1 TO WS-J-SUB
 1318 MOVE L-A1-CHR (WS-I-SUB) TO WS-CS-CHR (WS-J-SUB)
 1319 END-IF
 1320 END-PERFORM
 1321 *>
 1322 *> Scan the compressed source line
 1323 *>
 1324 PERFORM VARYING WS-I-SUB FROM 1 BY 1
 1325 UNTIL WS-I-SUB > 66
 1326 EVALUATE TRUE
 1327 WHEN WS-CS-CHR (WS-I-SUB) = '*'
 1328 IF WS-Compressed-Src-TXT (WS-I-SUB : 2) = '*>'
 1329 GOBACK
 1330 END-IF
 1331 WHEN (WS-CS-CHR (WS-I-SUB) = 'L') AND (WS-I-SUB < 66)
 1332 IF WS-Compressed-Src-TXT (WS-I-SUB : 15)
 1333 = 'LINKAGE SECTION'
 1334 SET L-A2-LINKAGE-SECTION-BOOL TO TRUE
 1335 GOBACK
 1336 END-IF
 1337 WHEN (WS-CS-CHR (WS-I-SUB) = 'I') AND (WS-I-SUB < 58)
 1338 IF WS-Compressed-Src-TXT (WS-I-SUB : 23)
 1339 = 'IDENTIFICATION DIVISION'
 1340 SET L-A2-IDENT-DIVISION-BOOL TO TRUE
 1341 GOBACK
 1342 END-IF
 1343 END-EVALUATE
 1344 END-PERFORM

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-49

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 34
====== ==
 1345 *>
 1346 *> If we get to here, we never found anything!
 1347 *>
 1348 + GOBACK
 1349 .
 1350 END PROGRAM CHECKSRC.
 1351
 1352 IDENTIFICATION DIVISION.
 1353 PROGRAM-ID. LISTING.
 1354 *>***
 1355 *> This subprogram generates a cross-reference listing of an **
 1356 *> GNU COBOL program. **
 1357 *>***
 1358 *> **
 1359 *> AUTHOR: GARY L. CUTLER **
 1360 *> CutlerGL@gmail.com **
 1361 *> Copyright (C) 2010, Gary L. Cutler, GPL **
 1362 *> **
 1363 *> DATE-WRITTEN: April 1, 2010 **
 1364 *> **
 1365 *>***
 1366 *> DATE CHANGE DESCRIPTION **
 1367 *> ====== == **
 1368 *> GC0410 Initial coding **
 1369 *> GC0711 Updates to accommodate the 12MAR2010 version of OC **
 1370 *> GC0710 Handle duplicate data names (i.e. 'CORRESPONDING' or **
 1371 *> qualified items) better; ignore 'END PROGRAM' recs **
 1372 *> so program name doesn't appear in listing. **
 1373 *> GC0313 Fix problem where the first procedure name defined **
 1374 *> in the PROCEDURE DIVISION lacks a "Defined" line **
 1375 *> number. **
 1376 *>***
 1377 ENVIRONMENT DIVISION.
 1378 CONFIGURATION SECTION.
 1379 REPOSITORY.
 1380 FUNCTION ALL INTRINSIC.
 1381 INPUT-OUTPUT SECTION.
 1382 FILE-CONTROL.
 1383 SELECT F-Expanded-Src-FILE ASSIGN TO WS-Expanded-Src-Fn-TXT
 1384 ORGANIZATION IS LINE SEQUENTIAL.
 1385 GC0712 SELECT F-Listing-FILE ASSIGN TO L-Listing-Fn-TXT
 1386 ORGANIZATION IS LINE SEQUENTIAL.
 1387 SELECT F-Original-Src-FILE ASSIGN TO L-Src-Fn-TXT
 1388 ORGANIZATION IS LINE SEQUENTIAL.
 1389 SELECT F-Sort-Work-FILE ASSIGN TO DISK.
 1390 DATA DIVISION.
 1391 FILE SECTION.
 1392 FD F-Expanded-Src-FILE.
 1393 01 F-Expanded-Src-REC.
 1394 05 F-ES-1-CHR PIC X.
 1395 05 F-ES-2-256-TXT-256 PIC X(256).
 1396 GC0712 01 F-Expanded-Src2-REC.
 1397 GC0712 05 F-ES-1-7-TXT PIC X(7).
 1398 GC0712 05 F-ES-8-256-TXT PIC X(249).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-50

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 35
====== ==
 1399
 1400 GC0712 FD F-Listing-FILE.
 1401 GC0712 01 F-Listing-REC PIC X(135).
 1402
 1403 FD F-Original-Src-FILE.
 1404 01 F-Original-Src-REC.
 1405 GC0410 05 F-OS-1-128-TXT.
 1406 GC0410 10 FILLER PIC X(6).
 1407 GC0410 10 F-OS-7-CHR PIC X(1).
 1408 GC0712 10 F-OS-8-72-TXT PIC X(65).
 1409 GC0712 10 FILLER PIC X(56).
 1410 05 F-OS-129-256-TXT PIC X(128).
 1411
 1412 SD F-Sort-Work-FILE.
 1413 01 F-Sort-Work-REC.
 1414 05 F-SW-Prog-ID-TXT PIC X(15).
 1415 05 F-SW-Token-Uc-TXT PIC X(32).
 1416 05 F-SW-Token-TXT PIC X(32).
 1417 05 F-SW-Section-TXT PIC X(15).
 1418 05 F-SW-Def-Line-NUM PIC 9(6).
 1419 05 F-SW-Reference-TXT.
 1420 10 F-SW-Ref-Line-NUM PIC 9(6).
 1421 10 F-SW-Ref-Flag-CHR PIC X(1).
 1422
 1423 WORKING-STORAGE SECTION.
 1424 78 WS-Lines-Per-Rec-CONST VALUE 8.
 1425
 1426 01 WS-Curr-CHR PIC X(1).
 1427 88 WS-Curr-Char-Is-Punct-BOOL VALUE '=', '(', ')',
 1428 '*', '/', '&',
 1429 ';', ',', '<',
 1430 '>', ':'.
 1431 88 WS-Curr-Char-Is-Quote-BOOL VALUE "'", '"'.
 1432 88 WS-Curr-Char-Is-X-BOOL VALUE 'x', 'X'.
 1433 88 WS-Curr-Char-Is-Z-BOOL VALUE 'z', 'Z'.
 1434
 1435 01 WS-Curr-Division-TXT PIC X(1).
 1436 GC1010 88 WS-CD-In-IDENT-DIV-BOOL VALUE 'i', 'I', '?'.
 1437 GC1010 88 WS-CD-In-ENV-DIV-BOOL VALUE 'e', 'E'.
 1438 GC1010 88 WS-CD-In-DATA-DIV-BOOL VALUE 'd', 'D'.
 1439 GC1010 88 WS-CD-In-PROC-DIV-BOOL VALUE 'p', 'P'.
 1440
 1441 01 WS-Curr-Line-NUM PIC 9(6).
 1442
 1443 01 WS-Curr-Prog-ID-TXT.
 1444 05 FILLER PIC X(12).
 1445 05 WS-CPI-13-15-TXT PIC X(3).
 1446 GC0712 05 WS-CPI-16-CHR PIC X(1).
 1447
 1448 01 WS-Curr-Section-TXT.
 1449 05 WS-CS-1-CHR PIC X(1).
 1450 05 WS-CS-2-14-TXT.
 1451 10 FILLER PIC X(10).
 1452 10 WS-CS-11-14-TXT PIC X(3).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-51

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 36
====== ==
 1453 05 WS-CS-15-CHR PIC X(1).
 1454
 1455 01 WS-Curr-Verb-TXT PIC X(12).
 1456
 1457 01 WS-Delim-TXT PIC X(2).
 1458
 1459 01 WS-Dummy-TXT PIC X(1).
 1460
 1461 01 WS-Expanded-Src-Fn-TXT PIC X(256).
 1462
 1463 01 WS-Filename-TXT PIC X(256).
 1464
 1465 01 WS-Group-Indicators-TXT.
 1466 05 WS-GI-Prog-ID-TXT PIC X(15).
 1467 05 WS-GI-Token-TXT PIC X(32).
 1468
 1469 01 WS-Held-Reference-TXT PIC X(100).
 1470
 1471 01 WS-I-SUB USAGE BINARY-LONG.
 1472
 1473 01 WS-J-SUB USAGE BINARY-LONG.
 1474
 1475 01 WS-Lines-Left-NUM USAGE BINARY-LONG.
 1476
 1477 01 WS-Lines-Per-Page-NUM USAGE BINARY-LONG.
 1478
 1479 01 WS-Lines-Per-Page-Env-TXT PIC X(256).
 1480
 1481 GC1010 01 WS-Main-Module-Name-TXT PIC X(256).
 1482
 1483 01 WS-Next-CHR PIC X(1).
 1484 88 WS-Next-Char-Is-Quote-BOOL VALUE '"', "'".
 1485
 1486 01 WS-OS-Type-FILLER-TXT.
 1487 05 VALUE 'Windows' PIC X(14).
 1488 05 VALUE 'Windows/Cygwin' PIC X(14).
 1489 05 VALUE 'UNIX/Linux' PIC X(14).
 1490 05 VALUE 'OSX' PIC X(14).
 1491 05 VALUE 'Windows/MinGW' PIC X(14).
 1492 01 WS-OS-Types-TXT REDEFINES WS-OS-Type-FILLER-TXT.
 1493 05 WS-OS-Type-TXT PIC X(14)
 1494 OCCURS 5 TIMES .
 1495
 1496 GC0712 01 WS-Page-NUM USAGE BINARY-LONG.
 1497
 1498 GC0712 01 WS-Page-No-TXT.
 1499 GC0712 05 WS-PN-Literal-TXT PIC X(6).
 1500 GC0712 05 WS-PN-Page-NUM PIC Z(3)9.
 1501
 1502 01 WS-Program-Path-TXT PIC X(256).
 1503
 1504 01 WS-Reserved-Words-TXT.
 1505 05 VALUE ' ' PIC X(33).
 1506 05 VALUE 'IABS ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-52

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 37
====== ==
 1507 05 VALUE 'VACCEPT ' PIC X(33).
 1508 05 VALUE ' ACCESS ' PIC X(33).
 1509 05 VALUE 'IACOS ' PIC X(33).
 1510 05 VALUE ' ACTIVE-CLASS ' PIC X(33). UNIMPLEMENTED
 1511 05 VALUE 'VADD ' PIC X(33).
 1512 05 VALUE ' ADDRESS ' PIC X(33).
 1513 05 VALUE ' ADVANCING ' PIC X(33).
 1514 05 VALUE 'KAFTER ' PIC X(33).
 1515 05 VALUE ' ALIGNED ' PIC X(33). UNIMPLEMENTED
 1516 05 VALUE ' ALL ' PIC X(33).
 1517 05 VALUE 'VALLOCATE ' PIC X(33).
 1518 05 VALUE ' ALPHABET ' PIC X(33).
 1519 05 VALUE ' ALPHABETIC ' PIC X(33).
 1520 05 VALUE ' ALPHABETIC-LOWER ' PIC X(33).
 1521 05 VALUE ' ALPHABETIC-UPPER ' PIC X(33).
 1522 05 VALUE ' ALPHANUMERIC ' PIC X(33).
 1523 05 VALUE ' ALPHANUMERIC-EDITED ' PIC X(33).
 1524 05 VALUE ' ALSO ' PIC X(33).
 1525 05 VALUE 'VALTER ' PIC X(33).
 1526 05 VALUE ' ALTERNATE ' PIC X(33).
 1527 05 VALUE ' AND ' PIC X(33).
 1528 05 VALUE 'IANNUITY ' PIC X(33).
 1529 05 VALUE ' ANY ' PIC X(33).
 1530 05 VALUE ' ANYCASE ' PIC X(33). UNIMPLEMENTED
 1531 05 VALUE ' ARE ' PIC X(33).
 1532 05 VALUE ' AREA ' PIC X(33).
 1533 05 VALUE ' AREAS ' PIC X(33).
 1534 05 VALUE ' ARGUMENT-NUMBER ' PIC X(33).
 1535 05 VALUE ' ARGUMENT-VALUE ' PIC X(33).
 1536 05 VALUE ' ARITHMETIC ' PIC X(33). UNIMPLEMENTED
 1537 05 VALUE ' AS ' PIC X(33).
 1538 05 VALUE ' ASCENDING ' PIC X(33).
 1539 05 VALUE ' ASCII ' PIC X(33).
 1540 05 VALUE 'IASIN ' PIC X(33).
 1541 05 VALUE ' ASSIGN ' PIC X(33).
 1542 05 VALUE ' AT ' PIC X(33).
 1543 05 VALUE 'IATAN ' PIC X(33).
 1544 GC0711 05 VALUE ' ATTRIBUTE ' PIC X(33).
 1545 05 VALUE ' AUTHOR ' PIC X(33). OBSOLETE
 1546 05 VALUE ' AUTO ' PIC X(33).
 1547 05 VALUE ' AUTO-SKIP ' PIC X(33).
 1548 05 VALUE ' AUTOMATIC ' PIC X(33).
 1549 05 VALUE ' AUTOTERMINATE ' PIC X(33).
 1550 05 VALUE ' AWAY-FROM-ZERO ' PIC X(33).
 1551 05 VALUE ' B-AND ' PIC X(33). UNIMPLEMENTED
 1552 05 VALUE ' B-NOT ' PIC X(33). UNIMPLEMENTED
 1553 05 VALUE ' B-OR ' PIC X(33). UNIMPLEMENTED
 1554 05 VALUE ' B-XOR ' PIC X(33). UNIMPLEMENTED
 1555 05 VALUE ' BACKGROUND-COLOR ' PIC X(33).
 1556 05 VALUE ' BACKGROUND-COLOUR ' PIC X(33).
 1557 05 VALUE ' BASED ' PIC X(33).
 1558 05 VALUE ' BEEP ' PIC X(33).
 1559 05 VALUE ' BEFORE ' PIC X(33).
 1560 05 VALUE ' BELL ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-53

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 38
====== ==
 1561 05 VALUE ' BINARY ' PIC X(33).
 1562 05 VALUE ' BINARY-C-LONG ' PIC X(33).
 1563 05 VALUE ' BINARY-CHAR ' PIC X(33).
 1564 05 VALUE ' BINARY-DOUBLE ' PIC X(33).
 1565 05 VALUE ' BINARY-INT ' PIC X(33).
 1566 05 VALUE ' BINARY-LONG ' PIC X(33).
 1567 05 VALUE ' BINARY-LONG-LONG ' PIC X(33).
 1568 05 VALUE ' BINARY-SHORT ' PIC X(33).
 1569 05 VALUE ' BIT ' PIC X(33). UNIMPLEMENTED
 1570 05 VALUE ' BLANK ' PIC X(33).
 1571 05 VALUE ' BLINK ' PIC X(33).
 1572 05 VALUE ' BLOCK ' PIC X(33).
 1573 05 VALUE ' BOOLEAN ' PIC X(33). UNIMPLEMENTED
 1574 05 VALUE 'IBOOLEAN-OF-INTEGER ' PIC X(33). UNIMPLEMENTED
 1575 05 VALUE ' BOTTOM ' PIC X(33).
 1576 05 VALUE 'YBY ' PIC X(33).
 1577 05 VALUE 'IBYTE-LENGTH ' PIC X(33).
 1578 05 VALUE 'MC01 ' PIC X(33).
 1579 05 VALUE 'MC02 ' PIC X(33).
 1580 05 VALUE 'MC03 ' PIC X(33).
 1581 05 VALUE 'MC04 ' PIC X(33).
 1582 05 VALUE 'MC05 ' PIC X(33).
 1583 05 VALUE 'MC06 ' PIC X(33).
 1584 05 VALUE 'MC07 ' PIC X(33).
 1585 05 VALUE 'MC08 ' PIC X(33).
 1586 05 VALUE 'MC09 ' PIC X(33).
 1587 05 VALUE 'MC10 ' PIC X(33).
 1588 05 VALUE 'MC11 ' PIC X(33).
 1589 05 VALUE 'MC12 ' PIC X(33).
 1590 05 VALUE 'VCALL ' PIC X(33).
 1591 05 VALUE 'MCALL-CONVENTION ' PIC X(33).
 1592 05 VALUE 'VCANCEL ' PIC X(33).
 1593 05 VALUE ' CAPACITY ' PIC X(33). UNIMPLEMENTED
 1594 05 VALUE ' CD ' PIC X(33). OBSOLETE
 1595 05 VALUE ' CENTER ' PIC X(33). UNIMPLEMENTED
 1596 05 VALUE ' CF ' PIC X(33).
 1597 05 VALUE ' CH ' PIC X(33).
 1598 05 VALUE ' CHAIN ' PIC X(33). UNIMPLEMENTED
 1599 05 VALUE ' CHAINING ' PIC X(33).
 1600 05 VALUE 'ICHAR ' PIC X(33).
 1601 05 VALUE 'ICHAR-NATIONAL ' PIC X(33). UNIMPLEMENTED
 1602 05 VALUE ' CHARACTER ' PIC X(33).
 1603 05 VALUE ' CHARACTERS ' PIC X(33).
 1604 05 VALUE ' CLASS ' PIC X(33).
 1605 05 VALUE ' CLASS-ID ' PIC X(33). UNIMPLEMENTED
 1606 GC0711 05 VALUE ' CLASSIFICATION ' PIC X(33).
 1607 05 VALUE 'VCLOSE ' PIC X(33).
 1608 05 VALUE 'ICOB-CRT-STATUS ' PIC X(33).
 1609 05 VALUE ' CODE ' PIC X(33).
 1610 05 VALUE ' CODE-SET ' PIC X(33).
 1611 05 VALUE ' COL ' PIC X(33).
 1612 05 VALUE ' COLLATING ' PIC X(33).
 1613 05 VALUE ' COLS ' PIC X(33).
 1614 05 VALUE ' COLUMN ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-54

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 39
====== ==
 1615 05 VALUE ' COLUMNS ' PIC X(33).
 1616 05 VALUE 'ICOMBINED-DATETIME ' PIC X(33).
 1617 05 VALUE ' COMMA ' PIC X(33).
 1618 05 VALUE ' COMMAND-LINE ' PIC X(33).
 1619 05 VALUE 'VCOMMIT ' PIC X(33).
 1620 05 VALUE ' COMMON ' PIC X(33).
 1621 05 VALUE ' COMMUNICATION ' PIC X(33). OBSOLETE
 1622 05 VALUE ' COMP ' PIC X(33).
 1623 05 VALUE ' COMP-1 ' PIC X(33).
 1624 05 VALUE ' COMP-2 ' PIC X(33).
 1625 05 VALUE ' COMP-3 ' PIC X(33).
 1626 05 VALUE ' COMP-4 ' PIC X(33).
 1627 05 VALUE ' COMP-5 ' PIC X(33).
 1628 05 VALUE ' COMP-6 ' PIC X(33).
 1629 05 VALUE ' COMP-X ' PIC X(33).
 1630 05 VALUE ' COMPUTATIONAL ' PIC X(33).
 1631 05 VALUE ' COMPUTATIONAL-1 ' PIC X(33).
 1632 05 VALUE ' COMPUTATIONAL-2 ' PIC X(33).
 1633 05 VALUE ' COMPUTATIONAL-3 ' PIC X(33).
 1634 05 VALUE ' COMPUTATIONAL-4 ' PIC X(33).
 1635 05 VALUE ' COMPUTATIONAL-5 ' PIC X(33).
 1636 05 VALUE ' COMPUTATIONAL-X ' PIC X(33).
 1637 05 VALUE 'VCOMPUTE ' PIC X(33).
 1638 05 VALUE 'ICONCATENATE ' PIC X(33).
 1639 GC0712 05 VALUE ' CONDITION ' PIC X(33).
 1640 05 VALUE 'KCONFIGURATION ' PIC X(33).
 1641 05 VALUE 'MCONSOLE ' PIC X(33).
 1642 05 VALUE ' CONSTANT ' PIC X(33).
 1643 05 VALUE ' CONTAINS ' PIC X(33).
 1644 GC0712 05 VALUE 'ACONTENT ' PIC X(33).
 1645 05 VALUE 'VCONTINUE ' PIC X(33).
 1646 05 VALUE ' CONTROL ' PIC X(33).
 1647 05 VALUE ' CONTROLS ' PIC X(33).
 1648 GC0711 05 VALUE ' CONVERSION ' PIC X(33).
 1649 05 VALUE 'KCONVERTING ' PIC X(33).
 1650 05 VALUE ' COPY ' PIC X(33).
 1651 05 VALUE ' CORR ' PIC X(33).
 1652 05 VALUE ' CORRESPONDING ' PIC X(33).
 1653 05 VALUE 'ICOS ' PIC X(33).
 1654 05 VALUE 'KCOUNT ' PIC X(33).
 1655 05 VALUE ' CRT ' PIC X(33).
 1656 05 VALUE ' CRT-UNDER ' PIC X(33).
 1657 05 VALUE 'MCSP ' PIC X(33).
 1658 05 VALUE ' CURRENCY ' PIC X(33).
 1659 GC0711 05 VALUE 'ICURRENCY-SYMBOL ' PIC X(33).
 1660 05 VALUE 'ICURRENT-DATE ' PIC X(33).
 1661 05 VALUE ' CURSOR ' PIC X(33).
 1662 05 VALUE ' CYCLE ' PIC X(33).
 1663 05 VALUE 'KDATA ' PIC X(33).
 1664 05 VALUE ' DATA-POINTER ' PIC X(33). UNIMPLEMENTED
 1665 05 VALUE ' DATE ' PIC X(33).
 1666 05 VALUE ' DATE-COMPILED ' PIC X(33). OBSOLETE
 1667 05 VALUE ' DATE-MODIFIED ' PIC X(33). OBSOLETE
 1668 05 VALUE 'IDATE-OF-INTEGER ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-55

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 40
====== ==
 1669 05 VALUE 'IDATE-TO-YYYYMMDD ' PIC X(33).
 1670 05 VALUE ' DATE-WRITTEN ' PIC X(33). OBSOLETE
 1671 05 VALUE ' DAY ' PIC X(33).
 1672 05 VALUE 'IDAY-OF-INTEGER ' PIC X(33).
 1673 05 VALUE ' DAY-OF-WEEK ' PIC X(33).
 1674 05 VALUE 'IDAY-TO-YYYYDDD ' PIC X(33).
 1675 05 VALUE ' DE ' PIC X(33).
 1676 GC0712 05 VALUE 'IDEBUG-CONTENTS ' PIC X(33).
 1677 GC0712 05 VALUE 'IDEBUG-ITEM ' PIC X(33).
 1678 GC0712 05 VALUE 'IDEBUG-LINE ' PIC X(33).
 1679 GC0712 05 VALUE 'IDEBUG-NAME ' PIC X(33).
 1680 GC0712 05 VALUE 'IDEBUG-SUB-1 ' PIC X(33).
 1681 GC0712 05 VALUE 'IDEBUG-SUB-2 ' PIC X(33).
 1682 GC0712 05 VALUE 'IDEBUG-SUB-3 ' PIC X(33).
 1683 05 VALUE ' DEBUGGING ' PIC X(33).
 1684 05 VALUE ' DECIMAL-POINT ' PIC X(33).
 1685 05 VALUE ' DECLARATIVES ' PIC X(33).
 1686 05 VALUE ' DEFAULT ' PIC X(33).
 1687 05 VALUE 'VDELETE ' PIC X(33).
 1688 05 VALUE ' DELIMITED ' PIC X(33).
 1689 05 VALUE 'KDELIMITER ' PIC X(33).
 1690 05 VALUE ' DEPENDING ' PIC X(33).
 1691 05 VALUE ' DESCENDING ' PIC X(33).
 1692 05 VALUE ' DESTINATION ' PIC X(33). UNIMPLEMENTED
 1693 05 VALUE ' DETAIL ' PIC X(33).
 1694 GC0711 05 VALUE ' DISC ' PIC X(33).
 1695 05 VALUE ' DISK ' PIC X(33).
 1696 05 VALUE 'VDISPLAY ' PIC X(33).
 1697 05 VALUE 'IDISPLAY-OF ' PIC X(33). UNIMPLEMENTED
 1698 05 VALUE 'VDIVIDE ' PIC X(33).
 1699 05 VALUE 'KDIVISION ' PIC X(33).
 1700 05 VALUE 'KDOWN ' PIC X(33).
 1701 05 VALUE ' DUPLICATES ' PIC X(33).
 1702 05 VALUE ' DYNAMIC ' PIC X(33).
 1703 05 VALUE 'IE ' PIC X(33).
 1704 05 VALUE ' EBCDIC ' PIC X(33).
 1705 GC0712 05 VALUE ' EC ' PIC X(33).
 1706 05 VALUE ' EGI ' PIC X(33). OBSOLETE
 1707 05 VALUE 'VELSE ' PIC X(33).
 1708 05 VALUE ' EMI ' PIC X(33). OBSOLETE
 1709 05 VALUE ' EMPTY-CHECK ' PIC X(33).
 1710 05 VALUE 'VENABLE ' PIC X(33). OBSOLETE
 1711 GC0710 05 VALUE 'KEND ' PIC X(33).
 1712 05 VALUE ' END-ACCEPT ' PIC X(33).
 1713 05 VALUE ' END-ADD ' PIC X(33).
 1714 05 VALUE ' END-CALL ' PIC X(33).
 1715 05 VALUE ' END-CHAIN ' PIC X(33). UNIMPLEMENTED
 1716 05 VALUE ' END-COMPUTE ' PIC X(33).
 1717 05 VALUE ' END-DELETE ' PIC X(33).
 1718 05 VALUE ' END-DISPLAY ' PIC X(33).
 1719 05 VALUE ' END-DIVIDE ' PIC X(33).
 1720 05 VALUE ' END-EVALUATE ' PIC X(33).
 1721 05 VALUE ' END-IF ' PIC X(33).
 1722 05 VALUE ' END-MULTIPLY ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-56

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 41
====== ==
 1723 05 VALUE ' END-OF-PAGE ' PIC X(33).
 1724 05 VALUE ' END-PERFORM ' PIC X(33).
 1725 05 VALUE ' END-READ ' PIC X(33).
 1726 05 VALUE ' END-RECEIVE ' PIC X(33). OBSOLETE
 1727 05 VALUE ' END-RETURN ' PIC X(33).
 1728 05 VALUE ' END-REWRITE ' PIC X(33).
 1729 05 VALUE ' END-SEARCH ' PIC X(33).
 1730 05 VALUE ' END-START ' PIC X(33).
 1731 05 VALUE ' END-STRING ' PIC X(33).
 1732 05 VALUE ' END-SUBTRACT ' PIC X(33).
 1733 05 VALUE ' END-UNSTRING ' PIC X(33).
 1734 05 VALUE ' END-WRITE ' PIC X(33).
 1735 05 VALUE 'VENTRY ' PIC X(33).
 1736 05 VALUE ' ENTRY-CONVENTION ' PIC X(33). UNIMPLEMENTED
 1737 05 VALUE 'KENVIRONMENT ' PIC X(33).
 1738 05 VALUE ' ENVIRONMENT-NAME ' PIC X(33).
 1739 05 VALUE ' ENVIRONMENT-VALUE ' PIC X(33).
 1740 05 VALUE ' EO ' PIC X(33). UNIMPLEMENTED
 1741 05 VALUE ' EOL ' PIC X(33).
 1742 05 VALUE ' EOP ' PIC X(33).
 1743 05 VALUE ' EOS ' PIC X(33).
 1744 05 VALUE ' EQUAL ' PIC X(33).
 1745 05 VALUE 'KEQUALS ' PIC X(33).
 1746 05 VALUE ' ERASE ' PIC X(33).
 1747 05 VALUE ' ERROR ' PIC X(33).
 1748 05 VALUE ' ESCAPE ' PIC X(33).
 1749 05 VALUE ' ESI ' PIC X(33). OBSOLETE
 1750 05 VALUE 'VEVALUATE ' PIC X(33).
 1751 05 VALUE ' EXCEPTION ' PIC X(33).
 1752 05 VALUE 'IEXCEPTION-FILE ' PIC X(33).
 1753 05 VALUE 'IEXCEPTION-FILE-N ' PIC X(33). UNIMPLEMENTED
 1754 05 VALUE 'IEXCEPTION-LOCATION ' PIC X(33).
 1755 05 VALUE 'IEXCEPTION-LOCATION-N ' PIC X(33). UNIMPLEMENTED
 1756 05 VALUE ' EXCEPTION-OBJECT ' PIC X(33). UNIMPLEMENTED
 1757 05 VALUE 'IEXCEPTION-STATEMENT ' PIC X(33).
 1758 05 VALUE 'IEXCEPTION-STATUS ' PIC X(33).
 1759 05 VALUE ' EXCLUSIVE ' PIC X(33).
 1760 05 VALUE 'VEXIT ' PIC X(33).
 1761 05 VALUE 'IEXP ' PIC X(33).
 1762 05 VALUE 'IEXP10 ' PIC X(33).
 1763 05 VALUE ' EXPANDS ' PIC X(33). UNIMPLEMENTED
 1764 05 VALUE ' EXTEND ' PIC X(33).
 1765 05 VALUE ' EXTERNAL ' PIC X(33).
 1766 05 VALUE 'IFACTORIAL ' PIC X(33).
 1767 05 VALUE ' FACTORY ' PIC X(33). UNIMPLEMENTED
 1768 05 VALUE ' FALSE ' PIC X(33).
 1769 05 VALUE 'KFD ' PIC X(33).
 1770 05 VALUE 'KFILE ' PIC X(33).
 1771 05 VALUE ' FILE-CONTROL ' PIC X(33).
 1772 05 VALUE ' FILE-ID ' PIC X(33).
 1773 GC1113 05 VALUE ' FILLER ' PIC X(33).
 1774 05 VALUE ' FINAL ' PIC X(33).
 1775 05 VALUE ' FIRST ' PIC X(33).
 1776 GC0712 05 VALUE ' FLOAT-BINARY-128 ' PIC X(33). UNIMPLEMENTED

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-57

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 42
====== ==
 1777 GC0712 05 VALUE ' FLOAT-BINARY-32 ' PIC X(33). UNIMPLEMENTED
 1778 GC0712 05 VALUE ' FLOAT-BINARY-64 ' PIC X(33). UNIMPLEMENTED
 1779 05 VALUE ' FLOAT-DECIMAL-16 ' PIC X(33).
 1780 05 VALUE ' FLOAT-DECIMAL-34 ' PIC X(33).
 1781 05 VALUE ' FLOAT-EXTENDED ' PIC X(33). UNIMPLEMENTED
 1782 GC0712 05 VALUE ' FLOAT-INFINITY ' PIC X(33). UNIMPLEMENTED
 1783 05 VALUE ' FLOAT-LONG ' PIC X(33).
 1784 GC0712 05 VALUE ' FLOAT-NOT-A-NUMBER ' PIC X(33). UNIMPLEMENTED
 1785 05 VALUE ' FLOAT-SHORT ' PIC X(33).
 1786 05 VALUE ' FOOTING ' PIC X(33).
 1787 05 VALUE ' FOR ' PIC X(33).
 1788 05 VALUE ' FOREGROUND-COLOR ' PIC X(33).
 1789 05 VALUE ' FOREGROUND-COLOUR ' PIC X(33).
 1790 GC0711 05 VALUE ' FOREVER ' PIC X(33).
 1791 05 VALUE ' FORMAT ' PIC X(33). UNIMPLEMENTED
 1792 GC0711 05 VALUE 'IFORMATTED-CURRENT-DATE ' PIC X(33). UNIMPLEMENTED
 1793 GC0711 05 VALUE 'IFORMATTED-DATE ' PIC X(33). UNIMPLEMENTED
 1794 GC0711 05 VALUE 'IFORMATTED-DATETIME ' PIC X(33). UNIMPLEMENTED
 1795 GC0711 05 VALUE 'IFORMATTED-TIME ' PIC X(33). UNIMPLEMENTED
 1796 05 VALUE 'MFORMFEED ' PIC X(33).
 1797 05 VALUE 'IFRACTION-PART ' PIC X(33).
 1798 05 VALUE 'VFREE ' PIC X(33).
 1799 05 VALUE ' FROM ' PIC X(33).
 1800 05 VALUE ' FULL ' PIC X(33).
 1801 05 VALUE ' FUNCTION ' PIC X(33).
 1802 GC0712 05 VALUE 'KFUNCTION-ID ' PIC X(33).
 1803 05 VALUE ' FUNCTION-POINTER ' PIC X(33). UNIMPLEMENTED
 1804 05 VALUE 'VGENERATE ' PIC X(33).
 1805 05 VALUE ' GET ' PIC X(33). UNIMPLEMENTED
 1806 05 VALUE 'KGIVING ' PIC X(33).
 1807 05 VALUE ' GLOBAL ' PIC X(33).
 1808 05 VALUE 'VGO ' PIC X(33).
 1809 05 VALUE 'VGOBACK ' PIC X(33).
 1810 05 VALUE ' GREATER ' PIC X(33).
 1811 05 VALUE ' GROUP ' PIC X(33).
 1812 05 VALUE ' GROUP-USAGE ' PIC X(33). UNIMPLEMENTED
 1813 05 VALUE ' HEADING ' PIC X(33).
 1814 05 VALUE ' HIGH-VALUE ' PIC X(33).
 1815 05 VALUE ' HIGH-VALUES ' PIC X(33).
 1816 GC0711 05 VALUE 'IHIGHEST-ALGEBRAIC ' PIC X(33).
 1817 05 VALUE ' HIGHLIGHT ' PIC X(33).
 1818 05 VALUE ' I-O ' PIC X(33).
 1819 05 VALUE ' I-O-CONTROL ' PIC X(33).
 1820 05 VALUE 'KID ' PIC X(33).
 1821 05 VALUE 'KIDENTIFICATION ' PIC X(33).
 1822 05 VALUE 'VIF ' PIC X(33).
 1823 05 VALUE ' IGNORE ' PIC X(33).
 1824 05 VALUE ' IGNORING ' PIC X(33).
 1825 05 VALUE ' IMPLEMENTS ' PIC X(33). UNIMPLEMENTED
 1826 05 VALUE ' IN ' PIC X(33).
 1827 05 VALUE ' INDEX ' PIC X(33).
 1828 05 VALUE 'KINDEXED ' PIC X(33).
 1829 05 VALUE ' INDICATE ' PIC X(33).
 1830 05 VALUE ' INDIRECT ' PIC X(33). UNIMPLEMENTED

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-58

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 43
====== ==
 1831 05 VALUE ' INHERITS ' PIC X(33). UNIMPLEMENTED
 1832 05 VALUE ' INITIAL ' PIC X(33).
 1833 05 VALUE 'VINITIALISE ' PIC X(33).
 1834 05 VALUE ' INITIALISED ' PIC X(33).
 1835 05 VALUE 'VINITIALIZE ' PIC X(33).
 1836 05 VALUE ' INITIALIZED ' PIC X(33).
 1837 05 VALUE 'VINITIATE ' PIC X(33).
 1838 05 VALUE ' INPUT ' PIC X(33).
 1839 05 VALUE 'KINPUT-OUTPUT ' PIC X(33).
 1840 05 VALUE 'VINSPECT ' PIC X(33).
 1841 05 VALUE ' INSTALLATION ' PIC X(33). OBSOLETE
 1842 05 VALUE 'IINTEGER ' PIC X(33).
 1843 05 VALUE 'IINTEGER-OF-BOOLEAN ' PIC X(33). UNIMPLEMENTED
 1844 05 VALUE 'IINTEGER-OF-DATE ' PIC X(33).
 1845 05 VALUE 'IINTEGER-OF-DAY ' PIC X(33).
 1846 GC0711 05 VALUE 'IINTEGER-OF-FORMATTED-DATE ' PIC X(33). UNIMPLEMENTED
 1847 05 VALUE 'IINTEGER-PART ' PIC X(33).
 1848 05 VALUE ' INTERFACE ' PIC X(33). UNIMPLEMENTED
 1849 05 VALUE ' INTERFACE-ID ' PIC X(33). UNIMPLEMENTED
 1850 05 VALUE ' INTERMEDIATE ' PIC X(33). UNIMPLEMENTED
 1851 05 VALUE 'KINTO ' PIC X(33).
 1852 05 VALUE ' INTRINSIC ' PIC X(33).
 1853 05 VALUE ' INVALID ' PIC X(33).
 1854 05 VALUE ' INVOKE ' PIC X(33). UNIMPLEMENTED
 1855 05 VALUE ' IS ' PIC X(33).
 1856 05 VALUE ' JUST ' PIC X(33).
 1857 05 VALUE ' JUSTIFIED ' PIC X(33).
 1858 05 VALUE ' KEPT ' PIC X(33).
 1859 05 VALUE ' KEY ' PIC X(33).
 1860 05 VALUE ' KEYBOARD ' PIC X(33).
 1861 05 VALUE ' LABEL ' PIC X(33).
 1862 05 VALUE ' LAST ' PIC X(33).
 1863 05 VALUE ' LC_ALL ' PIC X(33). UNIMPLEMENTED
 1864 05 VALUE ' LC_COLLATE ' PIC X(33). UNIMPLEMENTED
 1865 05 VALUE ' LC_CTYPE ' PIC X(33). UNIMPLEMENTED
 1866 05 VALUE ' LC_MESSAGES ' PIC X(33). UNIMPLEMENTED
 1867 05 VALUE ' LC_MONETARY ' PIC X(33). UNIMPLEMENTED
 1868 05 VALUE ' LC_NUMERIC ' PIC X(33). UNIMPLEMENTED
 1869 05 VALUE ' LC_TIME ' PIC X(33). UNIMPLEMENTED
 1870 05 VALUE ' LEADING ' PIC X(33).
 1871 05 VALUE ' LEFT ' PIC X(33).
 1872 05 VALUE ' LEFT-JUSTIFY ' PIC X(33). UNIMPLEMENTED
 1873 05 VALUE ' LEFTLINE ' PIC X(33).
 1874 GC0712 05 VALUE ' LENGTH ' PIC X(33).
 1875 GC0711 05 VALUE 'ILENGTH-AN ' PIC X(33).
 1876 05 VALUE ' LENGTH-CHECK ' PIC X(33).
 1877 05 VALUE ' LESS ' PIC X(33).
 1878 05 VALUE ' LIMIT ' PIC X(33).
 1879 05 VALUE ' LIMITS ' PIC X(33).
 1880 05 VALUE ' LINAGE ' PIC X(33).
 1881 05 VALUE 'ILINAGE-COUNTER ' PIC X(33).
 1882 05 VALUE ' LINE ' PIC X(33).
 1883 05 VALUE ' LINE-COUNTER ' PIC X(33).
 1884 05 VALUE ' LINES ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-59

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 44
====== ==
 1885 05 VALUE 'KLINKAGE ' PIC X(33).
 1886 05 VALUE 'KLOCAL-STORAGE ' PIC X(33).
 1887 05 VALUE ' LOCALE ' PIC X(33).
 1888 GC0711 05 VALUE 'ILOCALE-COMPARE ' PIC X(33).
 1889 05 VALUE 'ILOCALE-DATE ' PIC X(33).
 1890 05 VALUE 'ILOCALE-TIME ' PIC X(33).
 1891 05 VALUE 'ILOCALE-TIME-FROM-SECONDS ' PIC X(33).
 1892 05 VALUE ' LOCK ' PIC X(33).
 1893 05 VALUE 'ILOG ' PIC X(33).
 1894 05 VALUE 'ILOG10 ' PIC X(33).
 1895 05 VALUE ' LOW-VALUE ' PIC X(33).
 1896 05 VALUE ' LOW-VALUES ' PIC X(33).
 1897 05 VALUE ' LOWER ' PIC X(33).
 1898 05 VALUE 'ILOWER-CASE ' PIC X(33).
 1899 GC0711 05 VALUE 'ILOWEST-ALGEBRAIC ' PIC X(33).
 1900 05 VALUE ' LOWLIGHT ' PIC X(33).
 1901 05 VALUE ' MANUAL ' PIC X(33).
 1902 05 VALUE 'IMAX ' PIC X(33).
 1903 05 VALUE 'IMEAN ' PIC X(33).
 1904 05 VALUE 'IMEDIAN ' PIC X(33).
 1905 05 VALUE ' MEMORY ' PIC X(33).
 1906 05 VALUE 'VMERGE ' PIC X(33).
 1907 05 VALUE ' MESSAGE ' PIC X(33). OBSOLETE
 1908 05 VALUE ' METHOD ' PIC X(33). UNIMPLEMENTED
 1909 05 VALUE ' METHOD-ID ' PIC X(33). UNIMPLEMENTED
 1910 05 VALUE 'IMIDRANGE ' PIC X(33).
 1911 05 VALUE 'IMIN ' PIC X(33).
 1912 05 VALUE ' MINUS ' PIC X(33).
 1913 05 VALUE 'IMOD ' PIC X(33).
 1914 05 VALUE ' MODE ' PIC X(33).
 1915 05 VALUE 'IMODULE-CALLER-ID ' PIC X(33).
 1916 05 VALUE 'IMODULE-DATE ' PIC X(33).
 1917 05 VALUE 'IMODULE-FORMATTED-DATE ' PIC X(33).
 1918 05 VALUE 'IMODULE-ID ' PIC X(33).
 1919 05 VALUE 'IMODULE-PATH ' PIC X(33).
 1920 05 VALUE 'IMODULE-SOURCE ' PIC X(33).
 1921 05 VALUE 'IMODULE-TIME ' PIC X(33).
 1922 GC0711 05 VALUE 'IMONETARY-DECIMAL-POINT ' PIC X(33).
 1923 GC0711 05 VALUE 'IMONETARY-THOUSANDS-SEPARATOR ' PIC X(33).
 1924 05 VALUE 'VMOVE ' PIC X(33).
 1925 05 VALUE ' MULTIPLE ' PIC X(33).
 1926 05 VALUE 'VMULTIPLY ' PIC X(33).
 1927 GC0711 05 VALUE ' NAME ' PIC X(33).
 1928 05 VALUE ' NATIONAL ' PIC X(33).
 1929 05 VALUE ' NATIONAL-EDITED ' PIC X(33).
 1930 05 VALUE 'INATIONAL-OF ' PIC X(33). UNIMPLEMENTED
 1931 05 VALUE ' NATIVE ' PIC X(33).
 1932 05 VALUE ' NEAREST-AWAY-FROM-ZERO ' PIC X(33).
 1933 05 VALUE ' NEAREST-EVEN ' PIC X(33).
 1934 05 VALUE ' NEAREST-TOWARD-ZERO ' PIC X(33).
 1935 05 VALUE ' NEGATIVE ' PIC X(33).
 1936 05 VALUE ' NESTED ' PIC X(33). UNIMPLEMENTED
 1937 05 VALUE 'VNEXT ' PIC X(33).
 1938 05 VALUE ' NO ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-60

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 45
====== ==
 1939 05 VALUE ' NO-ECHO ' PIC X(33).
 1940 05 VALUE ' NONE ' PIC X(33). UNIMPLEMENTED
 1941 05 VALUE ' NORMAL ' PIC X(33).
 1942 05 VALUE ' NOT ' PIC X(33).
 1943 05 VALUE ' NULL ' PIC X(33).
 1944 05 VALUE ' NULLS ' PIC X(33).
 1945 05 VALUE ' NUMBER ' PIC X(33).
 1946 05 VALUE 'INUMBER-OF-CALL-PARAMETERS ' PIC X(33).
 1947 05 VALUE ' NUMBERS ' PIC X(33).
 1948 05 VALUE ' NUMERIC ' PIC X(33).
 1949 GC0711 05 VALUE 'INUMERIC-DECIMAL-POINT ' PIC X(33).
 1950 05 VALUE ' NUMERIC-EDITED ' PIC X(33).
 1951 GC0711 05 VALUE 'INUMERIC-THOUSANDS-SEPARATOR ' PIC X(33).
 1952 05 VALUE 'INUMVAL ' PIC X(33).
 1953 05 VALUE 'INUMVAL-C ' PIC X(33).
 1954 GC0711 05 VALUE 'INUMVAL-F ' PIC X(33).
 1955 05 VALUE ' OBJECT ' PIC X(33). UNIMPLEMENTED
 1956 05 VALUE ' OBJECT-COMPUTER ' PIC X(33).
 1957 05 VALUE ' OBJECT-REFERENCE ' PIC X(33). UNIMPLEMENTED
 1958 05 VALUE ' OCCURS ' PIC X(33).
 1959 05 VALUE ' OF ' PIC X(33).
 1960 05 VALUE ' OFF ' PIC X(33).
 1961 05 VALUE ' OMITTED ' PIC X(33).
 1962 05 VALUE ' ON ' PIC X(33).
 1963 05 VALUE ' ONLY ' PIC X(33).
 1964 05 VALUE 'VOPEN ' PIC X(33).
 1965 05 VALUE ' OPTIONAL ' PIC X(33).
 1966 05 VALUE ' OPTIONS ' PIC X(33). UNIMPLEMENTED
 1967 05 VALUE ' OR ' PIC X(33).
 1968 05 VALUE 'IORD ' PIC X(33).
 1969 05 VALUE 'IORD-MAX ' PIC X(33).
 1970 05 VALUE 'IORD-MIN ' PIC X(33).
 1971 05 VALUE ' ORDER ' PIC X(33).
 1972 05 VALUE ' ORGANISATION ' PIC X(33).
 1973 05 VALUE ' ORGANIZATION ' PIC X(33).
 1974 05 VALUE ' OTHER ' PIC X(33).
 1975 05 VALUE ' OUTPUT ' PIC X(33).
 1976 05 VALUE ' OVERFLOW ' PIC X(33).
 1977 05 VALUE ' OVERLINE ' PIC X(33).
 1978 05 VALUE ' OVERRIDE ' PIC X(33).
 1979 05 VALUE ' PACKED-DECIMAL ' PIC X(33).
 1980 05 VALUE ' PADDING ' PIC X(33).
 1981 05 VALUE ' PAGE ' PIC X(33).
 1982 05 VALUE ' PAGE-COUNTER ' PIC X(33).
 1983 05 VALUE ' PARAGRAPH ' PIC X(33).
 1984 05 VALUE 'VPERFORM ' PIC X(33).
 1985 05 VALUE ' PF ' PIC X(33).
 1986 05 VALUE ' PH ' PIC X(33).
 1987 05 VALUE 'IPI ' PIC X(33).
 1988 05 VALUE 'KPIC ' PIC X(33).
 1989 05 VALUE 'KPICTURE ' PIC X(33).
 1990 05 VALUE ' PLUS ' PIC X(33).
 1991 05 VALUE 'KPOINTER ' PIC X(33).
 1992 05 VALUE ' POSITION ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-61

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 46
====== ==
 1993 05 VALUE ' POSITIVE ' PIC X(33).
 1994 05 VALUE ' PREFIXED ' PIC X(33). UNIMPLEMENTED
 1995 05 VALUE ' PRESENT ' PIC X(33).
 1996 05 VALUE 'IPRESENT-VALUE ' PIC X(33).
 1997 05 VALUE ' PREVIOUS ' PIC X(33).
 1998 05 VALUE 'MPRINTER ' PIC X(33).
 1999 05 VALUE ' PRINTING ' PIC X(33).
 2000 05 VALUE 'KPROCEDURE ' PIC X(33).
 2001 05 VALUE ' PROCEDURE-POINTER ' PIC X(33).
 2002 05 VALUE ' PROCEDURES ' PIC X(33).
 2003 05 VALUE ' PROCEED ' PIC X(33).
 2004 05 VALUE ' PROGRAM ' PIC X(33).
 2005 05 VALUE 'KPROGRAM-ID ' PIC X(33).
 2006 05 VALUE ' PROGRAM-POINTER ' PIC X(33).
 2007 05 VALUE ' PROHIBITED ' PIC X(33).
 2008 05 VALUE ' PROMPT ' PIC X(33).
 2009 05 VALUE ' PROPERTY ' PIC X(33). UNIMPLEMENTED
 2010 05 VALUE ' PROTOTYPE ' PIC X(33). UNIMPLEMENTED
 2011 05 VALUE ' PURGE ' PIC X(33). OBSOLETE
 2012 05 VALUE ' QUEUE ' PIC X(33). OBSOLETE
 2013 05 VALUE ' QUOTE ' PIC X(33).
 2014 05 VALUE ' QUOTES ' PIC X(33).
 2015 05 VALUE ' RAISE ' PIC X(33). UNIMPLEMENTED
 2016 05 VALUE ' RAISING ' PIC X(33). UNIMPLEMENTED
 2017 05 VALUE 'IRANDOM ' PIC X(33).
 2018 05 VALUE 'IRANGE ' PIC X(33).
 2019 05 VALUE ' RD ' PIC X(33).
 2020 05 VALUE 'VREAD ' PIC X(33).
 2021 05 VALUE 'VREADY ' PIC X(33).
 2022 05 VALUE 'VRECEIVE ' PIC X(33). OBSOLETE
 2023 05 VALUE ' RECORD ' PIC X(33).
 2024 05 VALUE ' RECORDING ' PIC X(33).
 2025 05 VALUE ' RECORDS ' PIC X(33).
 2026 05 VALUE ' RECURSIVE ' PIC X(33).
 2027 05 VALUE 'KREDEFINES ' PIC X(33).
 2028 05 VALUE ' REEL ' PIC X(33).
 2029 GC0712 05 VALUE 'AREFERENCE ' PIC X(33).
 2030 05 VALUE ' REFERENCES ' PIC X(33).
 2031 05 VALUE ' RELATION ' PIC X(33). UNIMPLEMENTED
 2032 05 VALUE ' RELATIVE ' PIC X(33).
 2033 05 VALUE 'VRELEASE ' PIC X(33).
 2034 05 VALUE 'IREM ' PIC X(33).
 2035 05 VALUE ' REMAINDER ' PIC X(33).
 2036 05 VALUE ' REMARKS ' PIC X(33). OBSOLETE
 2037 05 VALUE ' REMOVAL ' PIC X(33).
 2038 05 VALUE 'KRENAMES ' PIC X(33).
 2039 05 VALUE ' REPLACE ' PIC X(33).
 2040 05 VALUE 'KREPLACING ' PIC X(33).
 2041 05 VALUE 'KREPORT ' PIC X(33).
 2042 05 VALUE ' REPORTING ' PIC X(33).
 2043 05 VALUE ' REPORTS ' PIC X(33).
 2044 05 VALUE ' REPOSITORY ' PIC X(33).
 2045 05 VALUE ' REQUIRED ' PIC X(33).
 2046 05 VALUE ' RESERVE ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-62

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 47
====== ==
 2047 05 VALUE 'VRESET ' PIC X(33).
 2048 05 VALUE ' RESUME ' PIC X(33). UNIMPLEMENTED
 2049 05 VALUE ' RETRY ' PIC X(33). UNIMPLEMENTED
 2050 05 VALUE 'VRETURN ' PIC X(33).
 2051 05 VALUE 'IRETURN-CODE ' PIC X(33).
 2052 05 VALUE 'KRETURNING ' PIC X(33).
 2053 05 VALUE 'IREVERSE ' PIC X(33).
 2054 05 VALUE ' REVERSE-VIDEO ' PIC X(33).
 2055 05 VALUE ' REVERSED ' PIC X(33).
 2056 05 VALUE ' REWIND ' PIC X(33).
 2057 05 VALUE 'VREWRITE ' PIC X(33).
 2058 05 VALUE ' RF ' PIC X(33).
 2059 05 VALUE ' RH ' PIC X(33).
 2060 05 VALUE ' RIGHT ' PIC X(33).
 2061 05 VALUE ' RIGHT-JUSTIFY ' PIC X(33). UNIMPLEMENTED
 2062 05 VALUE 'VROLLBACK ' PIC X(33).
 2063 05 VALUE ' ROUNDED ' PIC X(33).
 2064 05 VALUE ' ROUNDING ' PIC X(33). UNIMPLEMENTED
 2065 05 VALUE ' RUN ' PIC X(33).
 2066 05 VALUE ' SAME ' PIC X(33).
 2067 05 VALUE 'KSCREEN ' PIC X(33).
 2068 05 VALUE ' SCROLL ' PIC X(33).
 2069 05 VALUE 'KSD ' PIC X(33).
 2070 05 VALUE 'VSEARCH ' PIC X(33).
 2071 05 VALUE ' SECONDS ' PIC X(33). UNIMPLEMENTED
 2072 05 VALUE 'ISECONDS-FROM-FORMATTED-TIME ' PIC X(33).
 2073 05 VALUE 'ISECONDS-PAST-MIDNIGHT ' PIC X(33).
 2074 05 VALUE 'KSECTION ' PIC X(33).
 2075 05 VALUE ' SECURE ' PIC X(33).
 2076 05 VALUE ' SECURITY ' PIC X(33). OBSOLETE
 2077 05 VALUE ' SEGMENT ' PIC X(33). OBSOLETE
 2078 05 VALUE ' SEGMENT-LIMIT ' PIC X(33).
 2079 05 VALUE ' SELECT ' PIC X(33).
 2080 05 VALUE ' SELF ' PIC X(33). UNIMPLEMENTED
 2081 05 VALUE 'VSEND ' PIC X(33). OBSOLETE
 2082 05 VALUE ' SENTENCE ' PIC X(33).
 2083 05 VALUE ' SEPARATE ' PIC X(33).
 2084 05 VALUE ' SEQUENCE ' PIC X(33).
 2085 05 VALUE ' SEQUENTIAL ' PIC X(33).
 2086 05 VALUE 'VSET ' PIC X(33).
 2087 05 VALUE ' SHARING ' PIC X(33).
 2088 05 VALUE 'ISIGN ' PIC X(33).
 2089 05 VALUE ' SIGN ' PIC X(33).
 2090 05 VALUE ' SIGNED ' PIC X(33).
 2091 05 VALUE ' SIGNED-INT ' PIC X(33).
 2092 05 VALUE ' SIGNED-LONG ' PIC X(33).
 2093 05 VALUE ' SIGNED-SHORT ' PIC X(33).
 2094 05 VALUE 'ISIN ' PIC X(33).
 2095 05 VALUE ' SIZE ' PIC X(33).
 2096 05 VALUE 'VSORT ' PIC X(33).
 2097 05 VALUE ' SORT-MERGE ' PIC X(33).
 2098 05 VALUE 'ISORT-RETURN ' PIC X(33).
 2099 05 VALUE ' SOURCE ' PIC X(33).
 2100 05 VALUE ' SOURCE-COMPUTER ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-63

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 48
====== ==
 2101 05 VALUE ' SOURCES ' PIC X(33). UNIMPLEMENTED
 2102 05 VALUE ' SPACE ' PIC X(33).
 2103 05 VALUE ' SPACE-FILL ' PIC X(33). UNIMPLEMENTED
 2104 05 VALUE ' SPACES ' PIC X(33).
 2105 05 VALUE ' SPECIAL-NAMES ' PIC X(33).
 2106 05 VALUE 'ISQRT ' PIC X(33).
 2107 05 VALUE ' STANDARD ' PIC X(33).
 2108 05 VALUE ' STANDARD-1 ' PIC X(33).
 2109 05 VALUE ' STANDARD-2 ' PIC X(33).
 2110 05 VALUE ' STANDARD-BINARY ' PIC X(33). UNIMPLEMENTED
 2111 05 VALUE 'ISTANDARD-COMPARE ' PIC X(33). UNIMPLEMENTED
 2112 05 VALUE ' STANDARD-DECIMAL ' PIC X(33). UNIMPLEMENTED
 2113 05 VALUE 'ISTANDARD-DEVIATION ' PIC X(33).
 2114 05 VALUE 'VSTART ' PIC X(33).
 2115 05 VALUE ' STATEMENT ' PIC X(33). UNIMPLEMENTED
 2116 05 VALUE ' STATIC ' PIC X(33).
 2117 05 VALUE ' STATUS ' PIC X(33).
 2118 05 VALUE ' STDCALL ' PIC X(33).
 2119 05 VALUE 'MSTDERR ' PIC X(33).
 2120 05 VALUE 'MSTDIN ' PIC X(33).
 2121 05 VALUE 'MSTDOUT ' PIC X(33).
 2122 05 VALUE ' STEP ' PIC X(33).
 2123 05 VALUE 'VSTOP ' PIC X(33).
 2124 05 VALUE 'ISTORED-CHAR-LENGTH ' PIC X(33).
 2125 05 VALUE 'VSTRING ' PIC X(33).
 2126 05 VALUE ' STRONG ' PIC X(33). UNIMPLEMENTED
 2127 05 VALUE ' SUB-QUEUE-1 ' PIC X(33). OBSOLETE
 2128 05 VALUE ' SUB-QUEUE-2 ' PIC X(33). OBSOLETE
 2129 05 VALUE ' SUB-QUEUE-3 ' PIC X(33). OBSOLETE
 2130 05 VALUE 'ISUBSTITUTE ' PIC X(33).
 2131 05 VALUE 'ISUBSTITUTE-CASE ' PIC X(33).
 2132 05 VALUE 'VSUBTRACT ' PIC X(33).
 2133 05 VALUE 'ISUM ' PIC X(33).
 2134 05 VALUE ' SUM ' PIC X(33).
 2135 05 VALUE ' SUPER ' PIC X(33). UNIMPLEMENTED
 2136 05 VALUE 'VSUPPRESS ' PIC X(33).
 2137 05 VALUE 'MSW0 ' PIC X(33).
 2138 05 VALUE 'MSW1 ' PIC X(33).
 2139 05 VALUE 'MSW10 ' PIC X(33).
 2140 05 VALUE 'MSW11 ' PIC X(33).
 2141 05 VALUE 'MSW12 ' PIC X(33).
 2142 05 VALUE 'MSW13 ' PIC X(33).
 2143 05 VALUE 'MSW14 ' PIC X(33).
 2144 05 VALUE 'MSW15 ' PIC X(33).
 2145 05 VALUE 'MSW2 ' PIC X(33).
 2146 05 VALUE 'MSW3 ' PIC X(33).
 2147 05 VALUE 'MSW4 ' PIC X(33).
 2148 05 VALUE 'MSW5 ' PIC X(33).
 2149 05 VALUE 'MSW6 ' PIC X(33).
 2150 05 VALUE 'MSW7 ' PIC X(33).
 2151 05 VALUE 'MSW8 ' PIC X(33).
 2152 05 VALUE 'MSW9 ' PIC X(33).
 2153 05 VALUE 'MSWITCH-0 ' PIC X(33).
 2154 05 VALUE 'MSWITCH-1 ' PIC X(33).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-64

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 49
====== ==
 2155 05 VALUE 'MSWITCH-10 ' PIC X(33).
 2156 05 VALUE 'MSWITCH-11 ' PIC X(33).
 2157 05 VALUE 'MSWITCH-12 ' PIC X(33).
 2158 05 VALUE 'MSWITCH-13 ' PIC X(33).
 2159 05 VALUE 'MSWITCH-14 ' PIC X(33).
 2160 05 VALUE 'MSWITCH-15 ' PIC X(33).
 2161 05 VALUE 'MSWITCH-2 ' PIC X(33).
 2162 05 VALUE 'MSWITCH-3 ' PIC X(33).
 2163 05 VALUE 'MSWITCH-4 ' PIC X(33).
 2164 05 VALUE 'MSWITCH-5 ' PIC X(33).
 2165 05 VALUE 'MSWITCH-6 ' PIC X(33).
 2166 05 VALUE 'MSWITCH-7 ' PIC X(33).
 2167 05 VALUE 'MSWITCH-8 ' PIC X(33).
 2168 05 VALUE 'MSWITCH-9 ' PIC X(33).
 2169 05 VALUE ' SYMBOL ' PIC X(33). UNIMPLEMENTED
 2170 05 VALUE ' SYMBOLIC ' PIC X(33).
 2171 05 VALUE ' SYNC ' PIC X(33).
 2172 05 VALUE ' SYNCHRONISED ' PIC X(33).
 2173 05 VALUE ' SYNCHRONIZED ' PIC X(33).
 2174 05 VALUE 'MSYSERR ' PIC X(33).
 2175 05 VALUE 'MSYSIN ' PIC X(33).
 2176 05 VALUE 'MSYSIPT ' PIC X(33).
 2177 05 VALUE 'MSYSLIST ' PIC X(33).
 2178 05 VALUE 'MSYSLST ' PIC X(33).
 2179 05 VALUE 'MSYSOUT ' PIC X(33).
 2180 05 VALUE ' SYSTEM-DEFAULT ' PIC X(33).
 2181 05 VALUE ' TABLE ' PIC X(33). UNIMPLEMENTED
 2182 05 VALUE 'KTALLYING ' PIC X(33).
 2183 05 VALUE 'ITAN ' PIC X(33).
 2184 05 VALUE ' TAPE ' PIC X(33).
 2185 05 VALUE ' TERMINAL ' PIC X(33). OBSOLETE
 2186 05 VALUE 'VTERMINATE ' PIC X(33).
 2187 05 VALUE ' TEST ' PIC X(33).
 2188 05 VALUE 'ITEST-DATE-YYYYMMDD ' PIC X(33).
 2189 05 VALUE 'ITEST-DAY-YYYYDDD ' PIC X(33).
 2190 GC0711 05 VALUE 'ITEST-FORMATTED-DATETIME ' PIC X(33). UNIMPLEMENTED
 2191 GC0711 05 VALUE 'ITEST-NUMVAL ' PIC X(33).
 2192 GC0711 05 VALUE 'ITEST-NUMVAL-C ' PIC X(33).
 2193 GC0711 05 VALUE 'ITEST-NUMVAL-F ' PIC X(33).
 2194 05 VALUE ' TEXT ' PIC X(33). OBSOLETE
 2195 05 VALUE ' THAN ' PIC X(33).
 2196 05 VALUE ' THEN ' PIC X(33).
 2197 05 VALUE ' THROUGH ' PIC X(33).
 2198 05 VALUE ' THRU ' PIC X(33).
 2199 05 VALUE ' TIME ' PIC X(33).
 2200 GC0711 05 VALUE ' TIME-OUT ' PIC X(33).
 2201 GC0711 05 VALUE ' TIMEOUT ' PIC X(33).
 2202 05 VALUE ' TIMES ' PIC X(33).
 2203 05 VALUE 'KTO ' PIC X(33).
 2204 05 VALUE ' TOP ' PIC X(33).
 2205 05 VALUE ' TOWARD-GREATER ' PIC X(33).
 2206 05 VALUE ' TOWARD-LESSER ' PIC X(33).
 2207 05 VALUE ' TRAILING ' PIC X(33).
 2208 05 VALUE ' TRAILING-SIGN ' PIC X(33). UNIMPLEMENTED

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-65

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 50
====== ==
 2209 05 VALUE 'VTRANSFORM ' PIC X(33).
 2210 05 VALUE 'ITRIM ' PIC X(33).
 2211 05 VALUE ' TRUE ' PIC X(33).
 2212 05 VALUE ' TRUNCATION ' PIC X(33).
 2213 05 VALUE ' TYPE ' PIC X(33).
 2214 05 VALUE ' TYPEDEF ' PIC X(33). UNIMPLEMENTED
 2215 05 VALUE ' UCS-4 ' PIC X(33). UNIMPLEMENTED
 2216 05 VALUE ' UNDERLINE ' PIC X(33).
 2217 05 VALUE ' UNIT ' PIC X(33).
 2218 05 VALUE ' UNIVERSAL ' PIC X(33). UNIMPLEMENTED
 2219 05 VALUE 'VUNLOCK ' PIC X(33).
 2220 05 VALUE ' UNSIGNED ' PIC X(33).
 2221 05 VALUE ' UNSIGNED-INT ' PIC X(33).
 2222 05 VALUE ' UNSIGNED-LONG ' PIC X(33).
 2223 05 VALUE ' UNSIGNED-SHORT ' PIC X(33).
 2224 05 VALUE 'VUNSTRING ' PIC X(33).
 2225 05 VALUE ' UNTIL ' PIC X(33).
 2226 05 VALUE 'KUP ' PIC X(33).
 2227 05 VALUE ' UPDATE ' PIC X(33).
 2228 05 VALUE ' UPON ' PIC X(33).
 2229 05 VALUE ' UPPER ' PIC X(33).
 2230 05 VALUE 'IUPPER-CASE ' PIC X(33).
 2231 05 VALUE ' USAGE ' PIC X(33).
 2232 05 VALUE 'VUSE ' PIC X(33).
 2233 GC0711 05 VALUE ' USER ' PIC X(33).
 2234 05 VALUE ' USER-DEFAULT ' PIC X(33).
 2235 05 VALUE 'KUSING ' PIC X(33).
 2236 05 VALUE ' UTF-16 ' PIC X(33). UNIMPLEMENTED
 2237 05 VALUE ' UTF-8 ' PIC X(33). UNIMPLEMENTED
 2238 05 VALUE ' VAL-STATUS ' PIC X(33). UNIMPLEMENTED
 2239 05 VALUE ' VALID ' PIC X(33). UNIMPLEMENTED
 2240 05 VALUE ' VALIDATE ' PIC X(33). UNIMPLEMENTED
 2241 05 VALUE ' VALIDATE-STATUS ' PIC X(33). UNIMPLEMENTED
 2242 GC0712 05 VALUE 'AVALUE ' PIC X(33).
 2243 05 VALUE ' VALUES ' PIC X(33).
 2244 05 VALUE 'IVARIANCE ' PIC X(33).
 2245 05 VALUE 'KVARYING ' PIC X(33).
 2246 05 VALUE ' VDISABLE ' PIC X(33). UNIMPLEMENTED
 2247 05 VALUE ' WAIT ' PIC X(33).
 2248 05 VALUE 'VWHEN ' PIC X(33).
 2249 05 VALUE 'IWHEN-COMPILED ' PIC X(33).
 2250 05 VALUE ' WITH ' PIC X(33).
 2251 05 VALUE ' WORDS ' PIC X(33).
 2252 05 VALUE 'KWORKING-STORAGE ' PIC X(33).
 2253 05 VALUE 'VWRITE ' PIC X(33).
 2254 05 VALUE 'IYEAR-TO-YYYY ' PIC X(33).
 2255 05 VALUE ' YYYYDDD ' PIC X(33).
 2256 05 VALUE ' YYYYMMDD ' PIC X(33).
 2257 05 VALUE ' ZERO ' PIC X(33).
 2258 05 VALUE ' ZERO-FILL ' PIC X(33). UNIMPLEMENTED
 2259 05 VALUE ' ZEROES ' PIC X(33).
 2260 05 VALUE ' ZEROS ' PIC X(33).
 2261 01 WS-Reserved-Word-Table-TXT REDEFINES WS-Reserved-Words-TXT.
 2262 GC1113 05 WS-Reserved-Word-TXT OCCURS 756 TIMES

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-66

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 51
====== ==
 2263 ASCENDING KEY
 2264 WS-RW-Word-TXT
 2265 INDEXED WS-RW-IDX.
 2266 10 WS-RW-Type-CD PIC X(1).
 2267 10 WS-RW-Word-TXT PIC X(32).
 2268
 2269 01 WS-Runtime-Switches.
 2270 GC0710 05 WS-RS-Duplicate-CHR PIC X(1).
 2271 05 WS-RS-In-Which-Pgm-CHR PIC X(1).
 2272 88 WS-RS-In-Main-Module-BOOL VALUE 'M'.
 2273 88 WS-RS-In-Copybook-BOOL VALUE 'C'.
 2274 05 WS-RS-Last-Token-Ended-Sent-CHR PIC X(1).
 2275 05 WS-RS-Processing-PICTURE-CHR PIC X(1).
 2276 05 WS-RS-Token-Ended-Sentence-CHR PIC X(1).
 2277 GC0710 05 WS-RS-Verb-Has-Been-Found-CHR PIC X(1).
 2278
 2279 01 WS-Saved-Section-TXT PIC X(15).
 2280
 2281 01 WS-Src-Detail-Line-TXT.
 2282 05 WS-SDL-Line-NUM PIC ZZZZZ9.
 2283 05 FILLER PIC X(1).
 2284 05 WS-SDL-Statement-TXT PIC X(128).
 2285
 2286 01 WS-Src-Header-1-TXT.
 2287 GC0712 05 WS-SH1-Title-TXT PIC X(125).
 2288 05 WS-SH1-DT PIC 9999/99/99.
 2289
 2290 01 WS-Src-Header-2-TXT PIC X(135).
 2291
 2292 GC0712 01 WS-Src-Header-3-TXT.
 2293 GC0712 05 VALUE 'Line Statement' PIC X(125).
 2294 GC0712 05 WS-SH3-Page-No-TXT PIC X(10).
 2295
 2296 GC0712 01 WS-Src-Header-4-TXT.
 2297 GC0712 05 VALUE '======' PIC X(7).
 2298 GC0712 05 VALUE ALL '=' PIC X(128).
 2299
 2300 01 WS-Src-Line-NUM PIC 9(6).
 2301
 2302 01 WS-Src-SUB USAGE BINARY-LONG.
 2303
 2304 GC0712 01 WS-Argument-Type-CD PIC X(1).
 2305 GC0712 88 WS-Argument-Is-Updatable-BOOL VALUE 'U' FALSE ' '.
 2306
 2307 01 WS-Tally-QTY USAGE BINARY-LONG.
 2308
 2309 01 WS-Temp-10-Chars-TXT PIC X(10).
 2310
 2311 01 WS-Temp-32-Chars-1-TXT PIC X(32).
 2312
 2313 GC0711 01 WS-Temp-32-Chars-2-TXT PIC X(32).
 2314
 2315 GC0711 01 WS-Temp-32-Chars-3-TXT PIC X(32).
 2316

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-67

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 52
====== ==
 2317 GC0712 01 WS-Temp-65-Chars-TXT PIC X(65).
 2318
 2319 01 WS-Temp-256-Chars-TXT PIC X(256).
 2320
 2321 01 WS-Today-DT PIC 9(8).
 2322
 2323 01 WS-Token-Curr-TXT PIC X(32).
 2324
 2325 01 WS-Token-Curr-Uc-TXT PIC X(32).
 2326
 2327 01 WS-Token-Prev-TXT PIC X(32).
 2328
 2329 01 WS-Token-Search-TXT PIC X(32).
 2330
 2331 01 WS-Token-Type-CD PIC X(1).
 2332 GC0712 88 WS-TT-Token-Is-Argtype-BOOL VALUE 'A'.
 2333 88 WS-TT-Token-Is-EOF-BOOL VALUE HIGH-VALUES.
 2334 88 WS-TT-Token-Is-Identifier-BOOL VALUE 'I'.
 2335 GC0712 88 WS-TT-Token-Is-Keyword-BOOL VALUE 'K', 'V', 'A'.
 2336 88 WS-TT-Token-Is-Lit-Alpha-BOOL VALUE 'L'.
 2337 88 WS-TT-Token-Is-Lit-Number-BOOL VALUE 'N'.
 2338 88 WS-TT-Token-Is-Verb-BOOL VALUE 'V'.
 2339 GC0710 88 WS-TT-Token-Is-Reserved-Wd-BOOL VALUE ' '.
 2340
 2341 01 WS-Usernames-QTY USAGE BINARY-LONG.
 2342
 2343 01 WS-Xref-Detail-Line-TXT.
 2344 05 WS-XDL-Prog-ID-TXT PIC X(15).
 2345 05 FILLER PIC X(1).
 2346 05 WS-XDL-Token-TXT PIC X(32).
 2347 05 FILLER PIC X(1).
 2348 05 WS-XDL-Def-Line-NUM PIC ZZZZZ9.
 2349 05 FILLER PIC X(1).
 2350 05 WS-XDL-Section-TXT PIC X(15).
 2351 05 FILLER PIC X(1).
 2352 05 WS-XDL-Reference-TXT OCCURS WS-Lines-Per-Rec-CONST.
 2353 10 WS-XDL-Ref-Line-NUM PIC ZZZZZ9.
 2354 10 WS-XDL-Ref-Flag-CHR PIC X(1).
 2355 10 FILLER PIC X(1).
 2356
 2357 01 WS-Xref-Header-1-TXT.
 2358 GC0712 05 WS-XH1-Title-TXT PIC X(125).
 2359 05 WS-XH1-DT PIC 9999/99/99.
 2360
 2361 01 WS-Xref-Header-2-TXT PIC X(135).
 2362
 2363 GC0712 01 WS-Xref-Header-3-TXT.
 2364 GC0712 05 VALUE 'PROGRAM-ID' PIC X(16).
 2365 GC0712 05 VALUE 'Identifier/Register/' PIC X(20).
 2366 GC0712 05 VALUE 'Function' PIC X(13).
 2367 GC0712 05 VALUE 'Defn' PIC X(7).
 2368 GC0712 05 VALUE 'Where Defined' PIC X(16).
 2369 GC0712 05 VALUE 'References (* = Updated)' PIC X(53).
 2370 GC0712 05 WS-XH3-Page-No-TXT PIC X(10).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-68

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 53
====== ==
 2371
 2372 GC0712 01 WS-Xref-Header-4-TXT.
 2373 GC0712 05 VALUE ALL '=' PIC X(15).
 2374 GC0712 05 VALUE SPACE PIC X(1).
 2375 GC0712 05 VALUE ALL '=' PIC X(32).
 2376 GC0712 05 VALUE SPACE PIC X(1).
 2377 GC0712 05 VALUE ALL '=' PIC X(6).
 2378 GC0712 05 VALUE SPACE PIC X(1).
 2379 GC0712 05 VALUE ALL '=' PIC X(15).
 2380 GC0712 05 VALUE SPACE PIC X(1).
 2381 GC0712 05 VALUE ALL '=' PIC X(63).
 2382
 2383 LINKAGE SECTION.
 2384 GC0712 01 L-Listing-Fn-TXT PIC X(256).
 2385
 2386 01 L-Src-Fn-TXT PIC X(256).
 2387
 2388 GC0712 01 L-OS-Type-CD PIC 9(1).

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-69

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 54
====== ==
 2389 /
 2390 GC0712 PROCEDURE DIVISION USING L-Listing-Fn-TXT
 2391 GC0712 L-Src-Fn-TXT
 2392 GC0712 L-OS-Type-CD.
 2393 000-Main SECTION.
 2394 PERFORM 100-Initialization
 2395 GC0712 OPEN OUTPUT F-Listing-FILE
 2396 GC0712 PERFORM 500-Produce-Source-Listing
 2397 GC0712 SORT F-Sort-Work-FILE
 2398 GC0712 ASCENDING KEY F-SW-Prog-ID-TXT
 2399 GC0712 F-SW-Token-Uc-TXT
 2400 GC0712 F-SW-Ref-Line-NUM
 2401 GC0712 INPUT PROCEDURE 300-Tokenize-Source
 2402 GC0712 OUTPUT PROCEDURE 400-Produce-Xref-Listing
 2403 GC0712 CLOSE F-Listing-FILE
 2404 GOBACK
 2405 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-70

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 55
====== ==
 2406 /
 2407 *>***
 2408 *> Perform all program-wide initialization operations **
 2409 *>***
 2410 100-Initialization SECTION.
 2411 GC0712 MOVE 0 TO WS-Page-NUM
 2412 GC0712 STRING 'GNU COBOL V2.0 11FEB2012 Source Listing - GCic for '
 2413 GC0712 DELIMITED SIZE
 2414 GC0712 WS-OS-Type-TXT(L-OS-Type-CD) DELIMITED SPACE
 2415 GC0712 ' Copyright (C) 2009 - 2013, Gary L. Cutler, GPL'
 2416 GC0712 DELIMITED SIZE
 2417 GC0712 INTO WS-SH1-Title-TXT
 2418 GC0712 STRING 'GNU COBOL V2.0 11FEB2012 Cross-Reference Listing -' &
 2419 GC0712 ' GCic for ' DELIMITED SIZE
 2420 GC0712 WS-OS-Type-TXT(L-OS-Type-CD) DELIMITED SPACE
 2421 GC0712 ' Copyright (C) 2009 - 2013, Gary L. Cutler, GPL'
 2422 GC0712 DELIMITED SIZE
 2423 GC0712 INTO WS-XH1-Title-TXT
 2424 MOVE TRIM(L-Src-Fn-TXT,Leading) TO L-Src-Fn-TXT
 2425 GC1010 PERFORM VARYING WS-I-SUB FROM LENGTH(L-Src-Fn-TXT) BY -1 *> Locate last directory delimiter character so that the fil
 ename can be extracted
 2426 GC1010 UNTIL L-Src-Fn-TXT(WS-I-SUB:1) = '/' OR '\'
 2427 GC1010 OR WS-I-SUB = 0
 2428 GC1010 END-PERFORM
 2429 GC1010 IF WS-I-SUB = 0
 2430 GC1010 MOVE UPPER-CASE(L-Src-Fn-TXT) TO WS-Main-Module-Name-TXT *> No directory delimiter, whole thing is filename
 2431 GC1010 ELSE
 2432 GC1010 ADD 1 TO WS-I-SUB
 2433 GC1010 MOVE UPPER-CASE(L-Src-Fn-TXT(WS-I-SUB:))
 2434 GC1010 TO WS-Main-Module-Name-TXT *> Extract filename
 2435 GC1010 END-IF
 2436 ACCEPT WS-Lines-Per-Page-Env-TXT
 2437 FROM ENVIRONMENT 'OCXREF_LINES'
 2438 INSPECT L-Src-Fn-TXT REPLACING ALL '\' BY '/'
 2439 MOVE L-Src-Fn-TXT TO WS-Program-Path-TXT
 2440 MOVE WS-Program-Path-TXT TO WS-Src-Header-2-TXT
 2441 CALL 'C$JUSTIFY' USING WS-Src-Header-2-TXT, 'Right'
 2442 MOVE WS-Src-Header-2-TXT TO WS-Xref-Header-2-TXT
 2443 MOVE LENGTH(TRIM(L-Src-Fn-TXT,Trailing)) TO WS-I-SUB
 2444 MOVE 0 TO WS-J-SUB
 2445 PERFORM UNTIL L-Src-Fn-TXT(WS-I-SUB:1) = '/'
 2446 OR WS-I-SUB = 0
 2447 SUBTRACT 1 FROM WS-I-SUB
 2448 ADD 1 TO WS-J-SUB
 2449 END-PERFORM
 2450 UNSTRING L-Src-Fn-TXT((WS-I-SUB + 1):WS-J-SUB)
 2451 DELIMITED BY '.'
 2452 INTO WS-Filename-TXT
 2453 WS-Dummy-TXT
 2454 GC1010 STRING
 2455 GC1010 TRIM(WS-Filename-TXT,Trailing)
 2456 GC1010 '.i'
 2457 GC1010 DELIMITED SIZE
 2458 GC1010 INTO WS-Expanded-Src-Fn-TXT

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-71

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 56
====== ==
 2459 GC1010 CALL 'CBL_CHECK_FILE_EXIST' USING WS-Expanded-Src-Fn-TXT
 2460 GC1010 WS-Temp-256-Chars-TXT
 2461 GC1010 IF RETURN-CODE NOT = 0
 2462 GC1010 GOBACK
 2463 GC1010 END-IF
 2464 IF WS-Lines-Per-Page-Env-TXT NOT = SPACES
 2465 MOVE NUMVAL(WS-Lines-Per-Page-Env-TXT)
 2466 TO WS-Lines-Per-Page-NUM
 2467 ELSE
 2468 MOVE 58
 2469 TO WS-Lines-Per-Page-NUM
 2470 END-IF
 2471 ACCEPT WS-Today-DT FROM DATE YYYYMMDD
 2472 MOVE WS-Today-DT TO WS-XH1-DT
 2473 WS-SH1-DT
 2474 MOVE '????????????...' TO WS-Curr-Prog-ID-TXT
 2475 MOVE SPACES TO WS-Curr-Verb-TXT
 2476 WS-Held-Reference-TXT
 2477 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-72

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 57
====== ==
 2478 /
 2479 300-Tokenize-Source SECTION.
 2480 OPEN INPUT F-Expanded-Src-FILE
 2481 MOVE SPACES TO F-Expanded-Src-REC
 2482 MOVE 256 TO WS-Src-SUB
 2483 MOVE 0 TO WS-Usernames-QTY
 2484 WS-Curr-Line-NUM
 2485 MOVE '?' TO WS-Curr-Division-TXT
 2486 GC0710 MOVE 'N' TO WS-RS-Verb-Has-Been-Found-CHR
 2487 PERFORM FOREVER
 2488 PERFORM 310-Get-Token
 2489 IF WS-TT-Token-Is-EOF-BOOL
 2490 EXIT PERFORM
 2491 END-IF
 2492 MOVE UPPER-CASE(WS-Token-Curr-TXT)
 2493 TO WS-Token-Curr-Uc-TXT
 2494 GC1010 IF WS-TT-Token-Is-Keyword-BOOL
 2495 GC1010 OR WS-TT-Token-Is-Reserved-Wd-BOOL
 2496 GC1010 MOVE WS-Token-Curr-Uc-TXT TO WS-Token-Curr-TXT
 2497 GC1010 END-IF
 2498 IF WS-TT-Token-Is-Verb-BOOL
 2499 MOVE WS-Token-Curr-Uc-TXT TO WS-Curr-Verb-TXT
 2500 WS-Token-Prev-TXT
 2501 IF WS-Held-Reference-TXT NOT = SPACES
 2502 MOVE WS-Held-Reference-TXT TO F-Sort-Work-REC
 2503 MOVE SPACES TO WS-Held-Reference-TXT
 2504 RELEASE F-Sort-Work-REC
 2505 END-IF
 2506 END-IF
 2507 EVALUATE TRUE
 2508 WHEN WS-CD-In-IDENT-DIV-BOOL
 2509 PERFORM 320-IDENTIFICATION-DIVISION
 2510 WHEN WS-CD-In-ENV-DIV-BOOL
 2511 PERFORM 330-ENVIRONMENT-DIVISION
 2512 WHEN WS-CD-In-DATA-DIV-BOOL
 2513 PERFORM 340-DATA-DIVISION
 2514 WHEN WS-CD-In-PROC-DIV-BOOL
 2515 PERFORM 350-PROCEDURE-DIVISION
 2516 END-EVALUATE
 2517 IF WS-TT-Token-Is-Keyword-BOOL
 2518 MOVE WS-Token-Curr-Uc-TXT TO WS-Token-Prev-TXT
 2519 END-IF
 2520 IF WS-RS-Token-Ended-Sentence-CHR = 'Y'
 2521 AND WS-Curr-Division-TXT NOT = 'I'
 2522 MOVE SPACES TO WS-Token-Prev-TXT
 2523 WS-Curr-Verb-TXT
 2524 END-IF
 2525
 2526 END-PERFORM
 2527 CLOSE F-Expanded-Src-FILE
 2528 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-73

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 58
====== ==
 2529 /
 2530 310-Get-Token SECTION.
 2531 *>-- Position to 1st non-blank character
 2532 MOVE WS-RS-Token-Ended-Sentence-CHR
 2533 TO WS-RS-Last-Token-Ended-Sent-CHR
 2534 MOVE 'N' TO WS-RS-Token-Ended-Sentence-CHR
 2535 PERFORM UNTIL F-Expanded-Src-REC(WS-Src-SUB : 1) NOT = SPACE
 2536 IF WS-Src-SUB > 255
 2537 READ F-Expanded-Src-FILE AT END
 2538 IF WS-Held-Reference-TXT NOT = SPACES
 2539 MOVE WS-Held-Reference-TXT TO F-Sort-Work-REC
 2540 MOVE SPACES TO WS-Held-Reference-TXT
 2541 RELEASE F-Sort-Work-REC
 2542 END-IF
 2543 SET WS-TT-Token-Is-EOF-BOOL TO TRUE
 2544 MOVE 0 TO WS-Curr-Line-NUM
 2545 EXIT SECTION
 2546 END-READ
 2547 GC0712 IF F-ES-1-7-TXT NOT = '#DEFLIT'
 2548 GC0712 IF F-ES-1-CHR = '#'
 2549 GC0712 PERFORM 311-Control-Record
 2550 GC0712 ELSE
 2551 GC0712 PERFORM 312-Expanded-Src-Record
 2552 GC0712 END-IF
 2553 GC0712 END-IF
 2554 ELSE
 2555 ADD 1 TO WS-Src-SUB
 2556 END-IF
 2557 END-PERFORM
 2558 *>-- Extract token string
 2559 MOVE F-Expanded-Src-REC(WS-Src-SUB : 1)
 2560 TO WS-Curr-CHR
 2561 MOVE F-Expanded-Src-REC(WS-Src-SUB + 1: 1)
 2562 TO WS-Next-CHR
 2563 IF WS-Curr-CHR = '.'
 2564 ADD 1 TO WS-Src-SUB
 2565 MOVE WS-Curr-CHR TO WS-Token-Curr-TXT
 2566 MOVE SPACE TO WS-Token-Type-CD
 2567 MOVE 'Y' TO WS-RS-Token-Ended-Sentence-CHR
 2568 EXIT SECTION
 2569 END-IF
 2570 IF WS-Curr-Char-Is-Punct-BOOL
 2571 AND WS-Curr-CHR = '='
 2572 AND WS-Curr-Division-TXT = 'P'
 2573 ADD 1 TO WS-Src-SUB
 2574 MOVE 'EQUALS' TO WS-Token-Curr-TXT
 2575 MOVE 'K' TO WS-Token-Type-CD
 2576 EXIT SECTION
 2577 END-IF
 2578 IF WS-Curr-Char-Is-Punct-BOOL *> So subscripts don't get flagged w/ '*'
 2579 AND WS-Curr-CHR = '('
 2580 AND WS-Curr-Division-TXT = 'P'
 2581 MOVE SPACES TO WS-Token-Prev-TXT
 2582 END-IF

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-74

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 59
====== ==
 2583 IF WS-Curr-Char-Is-Punct-BOOL
 2584 ADD 1 TO WS-Src-SUB
 2585 MOVE WS-Curr-CHR TO WS-Token-Curr-TXT
 2586 MOVE SPACE TO WS-Token-Type-CD
 2587 EXIT SECTION
 2588 END-IF
 2589 IF WS-Curr-Char-Is-Quote-BOOL
 2590 ADD 1 TO WS-Src-SUB
 2591 UNSTRING F-Expanded-Src-REC
 2592 DELIMITED BY WS-Curr-CHR
 2593 INTO WS-Token-Curr-TXT
 2594 WITH POINTER WS-Src-SUB
 2595 IF F-Expanded-Src-REC(WS-Src-SUB : 1) = '.'
 2596 MOVE 'Y' TO WS-RS-Token-Ended-Sentence-CHR
 2597 ADD 1 TO WS-Src-SUB
 2598 END-IF
 2599 SET WS-TT-Token-Is-Lit-Alpha-BOOL TO TRUE
 2600 EXIT SECTION
 2601 END-IF
 2602 IF WS-Curr-Char-Is-X-BOOL AND WS-Next-Char-Is-Quote-BOOL
 2603 ADD 2 TO WS-Src-SUB
 2604 UNSTRING F-Expanded-Src-REC
 2605 DELIMITED BY WS-Next-CHR
 2606 INTO WS-Token-Curr-TXT
 2607 WITH POINTER WS-Src-SUB
 2608 IF F-Expanded-Src-REC(WS-Src-SUB : 1) = '.'
 2609 MOVE 'Y' TO WS-RS-Token-Ended-Sentence-CHR
 2610 ADD 1 TO WS-Src-SUB
 2611 END-IF
 2612 SET WS-TT-Token-Is-Lit-Number-BOOL TO TRUE
 2613 EXIT SECTION
 2614 END-IF
 2615 IF WS-Curr-Char-Is-Z-BOOL AND WS-Next-Char-Is-Quote-BOOL
 2616 ADD 2 TO WS-Src-SUB
 2617 UNSTRING F-Expanded-Src-REC
 2618 DELIMITED BY WS-Next-CHR
 2619 INTO WS-Token-Curr-TXT
 2620 WITH POINTER WS-Src-SUB
 2621 IF F-Expanded-Src-REC(WS-Src-SUB : 1) = '.'
 2622 MOVE 'Y' TO WS-RS-Token-Ended-Sentence-CHR
 2623 ADD 1 TO WS-Src-SUB
 2624 END-IF
 2625 SET WS-TT-Token-Is-Lit-Alpha-BOOL TO TRUE
 2626 EXIT SECTION
 2627 END-IF
 2628 IF WS-RS-Processing-PICTURE-CHR = 'Y'
 2629 UNSTRING F-Expanded-Src-REC
 2630 DELIMITED BY '. ' OR ' '
 2631 INTO WS-Token-Curr-TXT
 2632 DELIMITER IN WS-Delim-TXT
 2633 WITH POINTER WS-Src-SUB
 2634 IF WS-Delim-TXT = '. '
 2635 MOVE 'Y' TO WS-RS-Token-Ended-Sentence-CHR
 2636 ADD 1 TO WS-Src-SUB

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-75

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 60
====== ==
 2637 END-IF
 2638 IF UPPER-CASE(WS-Token-Curr-TXT) = 'IS'
 2639 MOVE SPACE TO WS-Token-Type-CD
 2640 EXIT SECTION
 2641 ELSE
 2642 MOVE 'N' TO WS-RS-Processing-PICTURE-CHR
 2643 MOVE SPACE TO WS-Token-Type-CD
 2644 EXIT SECTION
 2645 END-IF
 2646 END-IF
 2647 UNSTRING F-Expanded-Src-REC
 2648 DELIMITED BY '. ' OR ' ' OR '=' OR '(' OR ')' OR '*'
 2649 OR '/' OR '&' OR ';' OR ',' OR '<'
 2650 OR '>' OR ':'
 2651 INTO WS-Token-Curr-TXT
 2652 DELIMITER IN WS-Delim-TXT
 2653 WITH POINTER WS-Src-SUB
 2654 IF WS-Delim-TXT = '. '
 2655 MOVE 'Y' TO WS-RS-Token-Ended-Sentence-CHR
 2656 END-IF
 2657 IF WS-Delim-TXT NOT = '. ' AND ' '
 2658 SUBTRACT 1 FROM WS-Src-SUB
 2659 END-IF
 2660 *>-- Classify Token
 2661 MOVE UPPER-CASE(WS-Token-Curr-TXT) TO WS-Token-Search-TXT
 2662 IF WS-Token-Search-TXT = 'EQUAL' OR 'EQUALS'
 2663 MOVE 'EQUALS' TO WS-Token-Curr-TXT
 2664 MOVE 'K' TO WS-Token-Type-CD
 2665 EXIT SECTION
 2666 END-IF
 2667 SEARCH ALL WS-Reserved-Word-TXT
 2668 WHEN WS-RW-Word-TXT (WS-RW-IDX) = WS-Token-Search-TXT
 2669 MOVE WS-RW-Type-CD (WS-RW-IDX) TO WS-Token-Type-CD
 2670 GC0710 IF WS-TT-Token-Is-Verb-BOOL
 2671 GC0710 MOVE 'Y' TO WS-RS-Verb-Has-Been-Found-CHR
 2672 GC0710 END-IF
 2673 EXIT SECTION
 2674 END-SEARCH
 2675 *>-- Not a reserved word, must be a user name
 2676 SET WS-TT-Token-Is-Identifier-BOOL TO TRUE
 2677 PERFORM 313-Check-For-Numeric-Token
 2678 IF WS-TT-Token-Is-Lit-Number-BOOL
 2679 IF (WS-RS-Last-Token-Ended-Sent-CHR = 'Y')
 2680 AND (WS-Curr-Division-TXT = 'D')
 2681 MOVE 'LEVEL #' TO WS-Token-Curr-TXT
 2682 MOVE 'K' TO WS-Token-Type-CD
 2683 EXIT SECTION
 2684 ELSE
 2685 EXIT SECTION
 2686 END-IF
 2687 END-IF
 2688 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-76

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 61
====== ==
 2689 /
 2690 311-Control-Record SECTION.
 2691 UNSTRING F-ES-2-256-TXT-256
 2692 DELIMITED BY '"'
 2693 INTO WS-Temp-10-Chars-TXT
 2694 WS-Temp-256-Chars-TXT
 2695 WS-Dummy-TXT
 2696 INSPECT WS-Temp-10-Chars-TXT REPLACING ALL '"' BY SPACE
 2697 GC0712 IF WS-Temp-10-Chars-TXT(1:4) = 'line'
 2698 GC0712 MOVE SPACES TO WS-Temp-10-Chars-TXT(1:4)
 2699 GC0712 END-IF
 2700 COMPUTE WS-I-SUB = NUMVAL(WS-Temp-10-Chars-TXT) - 1
 2701 GC1010 IF UPPER-CASE(TRIM(WS-Temp-256-Chars-TXT,Trailing)) =
 2702 GC1010 TRIM(WS-Main-Module-Name-TXT)
 2703 MOVE WS-I-SUB TO WS-Curr-Line-NUM
 2704 SET WS-RS-In-Main-Module-BOOL TO TRUE
 2705 IF WS-Saved-Section-TXT NOT = SPACES
 2706 MOVE WS-Saved-Section-TXT TO WS-Curr-Section-TXT
 2707 END-IF
 2708 ELSE
 2709 SET WS-RS-In-Copybook-BOOL TO TRUE
 2710 IF WS-Saved-Section-TXT = SPACES
 2711 MOVE WS-Curr-Section-TXT TO WS-Saved-Section-TXT
 2712 END-IF
 2713 MOVE LENGTH(TRIM(WS-Temp-256-Chars-TXT,Trailing))
 2714 TO WS-I-SUB
 2715 MOVE 0 TO WS-J-SUB
 2716 PERFORM UNTIL WS-Temp-256-Chars-TXT(WS-I-SUB:1) = '/'
 2717 OR WS-I-SUB = 0
 2718 SUBTRACT 1 FROM WS-I-SUB
 2719 ADD 1 TO WS-J-SUB
 2720 END-PERFORM
 2721 UNSTRING WS-Temp-256-Chars-TXT((WS-I-SUB + 1):WS-J-SUB)
 2722 DELIMITED BY '.'
 2723 INTO WS-Filename-TXT
 2724 WS-Dummy-TXT
 2725 MOVE '[' TO WS-CS-1-CHR
 2726 MOVE WS-Filename-TXT TO WS-CS-2-14-TXT
 2727 IF WS-CS-11-14-TXT NOT = SPACES
 2728 MOVE '...' TO WS-CS-11-14-TXT
 2729 END-IF
 2730 MOVE ']' TO WS-CS-15-CHR
 2731 END-IF
 2732 MOVE SPACES TO F-Expanded-Src-REC *> Force another READ
 2733 MOVE 256 TO WS-Src-SUB
 2734 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-77

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 62
====== ==
 2735 /
 2736 312-Expanded-Src-Record SECTION.
 2737 GC0711 MOVE 2 TO WS-Src-SUB
 2738 IF WS-RS-In-Main-Module-BOOL
 2739 ADD 1 To WS-Curr-Line-NUM
 2740 END-IF
 2741 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-78

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 63
====== ==
 2742 /
 2743 313-Check-For-Numeric-Token SECTION.
 2744 MOVE WS-Token-Curr-TXT TO WS-Temp-32-Chars-1-TXT
 2745 INSPECT WS-Temp-32-Chars-1-TXT
 2746 GC0711 CONVERTING '0123456789' TO SPACES
 2747 GC0711 IF WS-Temp-32-Chars-1-TXT = SPACES *> Simple Unsigned Integer
 2748 SET WS-TT-Token-Is-Lit-Number-BOOL TO TRUE
 2749 EXIT SECTION
 2750 END-IF
 2751 GC0711 MOVE SPACES TO WS-Temp-32-Chars-2-TXT
 2752 GC0711 WS-Temp-32-Chars-3-TXT
 2753 GC0711 WS-Dummy-TXT
 2754 GC0711 UNSTRING WS-Temp-32-Chars-1-TXT
 2755 GC0711 DELIMITED BY 'e' OR 'E'
 2756 GC0711 INTO WS-Temp-32-Chars-2-TXT
 2757 GC0711 WS-Temp-32-Chars-3-TXT
 2758 GC0711 WS-Dummy-TXT
 2759 GC0711 IF WS-Dummy-TXT NOT = SPACES *> More than one 'E' - Not Numeric
 2760 GC0711 EXIT SECTION
 2761 GC0711 END-IF
 2762 GC0711 IF WS-Temp-32-Chars-2-TXT(1:1) = '+' OR '-'
 2763 GC0711 MOVE SPACE TO WS-Temp-32-Chars-2-TXT(1:1)
 2764 GC0711 END-IF
 2765 GC0711 IF WS-Temp-32-Chars-3-TXT(1:1) = '+' OR '-'
 2766 GC0711 MOVE SPACE TO WS-Temp-32-Chars-3-TXT(1:1)
 2767 GC0711 END-IF
 2768 MOVE 0 TO WS-Tally-QTY
 2769 GC0711 INSPECT WS-Temp-32-Chars-2-TXT
 2770 TALLYING WS-Tally-QTY FOR ALL '.'
 2771 IF WS-Tally-QTY = 1
 2772 GC0711 INSPECT WS-Temp-32-Chars-2-TXT REPLACING ALL '.' BY SPACE
 2773 END-IF
 2774 GC0711 INSPECT WS-Temp-32-Chars-3-TXT
 2775 GC0711 TALLYING WS-Tally-QTY FOR ALL '.'
 2776 GC0711 IF WS-Tally-QTY = 1
 2777 GC0711 INSPECT WS-Temp-32-Chars-3-TXT REPLACING ALL '.' BY SPACE
 2778 GC0711 END-IF
 2779 GC0711 IF WS-Temp-32-Chars-2-TXT = SPACES AND WS-Temp-32-Chars-3-TXT = SPACES
 2780 SET WS-TT-Token-Is-Lit-Number-BOOL TO TRUE
 2781 EXIT SECTION
 2782 END-IF
 2783 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-79

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 64
====== ==
 2784 /
 2785 320-IDENTIFICATION-DIVISION SECTION.
 2786 GC0712 IF WS-TT-Token-Is-Argtype-BOOL
 2787 GC0712 SET WS-TT-Token-Is-Reserved-Wd-BOOL TO TRUE
 2788 GC0712 END-IF
 2789 GC0710 MOVE 'N' TO WS-RS-Verb-Has-Been-Found-CHR
 2790 IF WS-TT-Token-Is-Keyword-BOOL
 2791 AND WS-Token-Curr-TXT = 'DIVISION'
 2792 MOVE WS-Token-Prev-TXT TO WS-Curr-Division-TXT
 2793 EXIT SECTION
 2794 END-IF
 2795 GC0712 IF WS-Token-Prev-TXT = 'PROGRAM-ID' OR 'FUNCTION-ID'
 2796 MOVE SPACES TO WS-Token-Prev-TXT
 2797 MOVE WS-Token-Curr-TXT TO WS-Curr-Prog-ID-TXT
 2798 GC0712 IF WS-CPI-16-CHR NOT = SPACES
 2799 MOVE '...' TO WS-CPI-13-15-TXT
 2800 END-IF
 2801 GC0712 SEARCH ALL WS-Reserved-Word-TXT
 2802 GC0712 WHEN WS-RW-Word-TXT (WS-RW-IDX) = 'LENGTH'
 2803 GC0712 MOVE ' ' TO WS-RW-Type-CD (WS-RW-IDX)
 2804 GC0712 END-SEARCH
 2805 EXIT SECTION
 2806 END-IF
 2807 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-80

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 65
====== ==
 2808 /
 2809 330-ENVIRONMENT-DIVISION SECTION.
 2810 GC0712 IF WS-TT-Token-Is-Argtype-BOOL
 2811 GC0712 SET WS-TT-Token-Is-Reserved-Wd-BOOL TO TRUE
 2812 GC0712 END-IF
 2813 IF WS-TT-Token-Is-Keyword-BOOL
 2814 AND WS-Token-Curr-TXT = 'DIVISION'
 2815 MOVE WS-Token-Prev-TXT TO WS-Curr-Division-TXT
 2816 EXIT SECTION
 2817 END-IF
 2818 IF WS-TT-Token-Is-Keyword-BOOL
 2819 AND WS-Token-Curr-TXT = 'SECTION'
 2820 MOVE WS-Token-Prev-TXT TO WS-Curr-Section-TXT
 2821 EXIT SECTION
 2822 END-IF
 2823 IF WS-TT-Token-Is-Identifier-BOOL
 2824 GC0712 IF WS-Token-Prev-TXT = 'FUNCTION'
 2825 GC0712 PERFORM 360-Release-Def
 2826 GC0712 ELSE
 2827 GC0712 PERFORM 361-Release-Ref
 2828 GC0712 END-IF
 2829 END-IF
 2830 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-81

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 66
====== ==
 2831 /
 2832 340-DATA-DIVISION SECTION.
 2833 GC0712 IF WS-TT-Token-Is-Argtype-BOOL
 2834 GC0712 SET WS-TT-Token-Is-Reserved-Wd-BOOL TO TRUE
 2835 GC0712 END-IF
 2836 IF WS-TT-Token-Is-Keyword-BOOL
 2837 AND WS-Token-Curr-TXT = 'DIVISION'
 2838 GC0712 SEARCH ALL WS-Reserved-Word-TXT
 2839 GC0712 WHEN WS-RW-Word-TXT (WS-RW-IDX) = 'LENGTH'
 2840 GC0712 MOVE 'I' TO WS-RW-Type-CD (WS-RW-IDX)
 2841 GC0712 END-SEARCH
 2842 MOVE WS-Token-Prev-TXT TO WS-Curr-Division-TXT
 2843 EXIT SECTION
 2844 END-IF
 2845 IF WS-TT-Token-Is-Keyword-BOOL
 2846 AND WS-Token-Curr-TXT = 'SECTION'
 2847 MOVE WS-Token-Prev-TXT TO WS-Curr-Section-TXT
 2848 EXIT SECTION
 2849 END-IF
 2850 IF (WS-Token-Curr-TXT = 'PIC' OR 'PICTURE')
 2851 AND (WS-TT-Token-Is-Keyword-BOOL)
 2852 MOVE 'Y' TO WS-RS-Processing-PICTURE-CHR
 2853 EXIT SECTION
 2854 END-IF
 2855 GC0710 IF WS-TT-Token-Is-Reserved-Wd-BOOL
 2856 GC0710 AND WS-Token-Prev-TXT = 'LEVEL #'
 2857 GC0710 MOVE SPACES TO WS-Token-Prev-TXT
 2858 GC0710 EXIT SECTION
 2859 GC0710 END-IF
 2860 IF WS-TT-Token-Is-Identifier-BOOL
 2861 EVALUATE WS-Token-Prev-TXT
 2862 WHEN 'FD'
 2863 PERFORM 360-Release-Def
 2864 MOVE SPACES TO WS-Token-Prev-TXT
 2865 WHEN 'SD'
 2866 PERFORM 360-Release-Def
 2867 MOVE SPACES TO WS-Token-Prev-TXT
 2868 WHEN 'LEVEL #'
 2869 PERFORM 360-Release-Def
 2870 MOVE SPACES TO WS-Token-Prev-TXT
 2871 WHEN 'INDEXED'
 2872 PERFORM 360-Release-Def
 2873 MOVE SPACES TO WS-Token-Prev-TXT
 2874 WHEN 'USING'
 2875 PERFORM 362-Release-Upd
 2876 MOVE SPACES TO WS-Token-Prev-TXT
 2877 WHEN 'INTO'
 2878 PERFORM 362-Release-Upd
 2879 MOVE SPACES TO WS-Token-Prev-TXT
 2880 WHEN OTHER
 2881 PERFORM 361-Release-Ref
 2882 END-EVALUATE
 2883 EXIT SECTION
 2884 END-IF

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-82

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 67
====== ==
 2885 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-83

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 68
====== ==
 2886 /
 2887 350-PROCEDURE-DIVISION SECTION.
 2888 IF WS-Curr-Section-TXT NOT = 'PROCEDURE'
 2889 MOVE 'PROCEDURE' TO WS-Curr-Section-TXT
 2890 END-IF
 2891 GC0710 IF WS-Token-Curr-Uc-TXT = 'PROGRAM'
 2892 GC0710 AND WS-Token-Prev-TXT = 'END'
 2893 GC0710 MOVE '?' TO WS-Curr-Division-TXT
 2894 GC0710 EXIT SECTION
 2895 GC0710 END-IF
 2896 IF WS-TT-Token-Is-Keyword-BOOL
 2897 AND WS-Token-Curr-TXT = 'DIVISION'
 2898 MOVE WS-Token-Prev-TXT TO WS-Curr-Division-TXT
 2899 GC0712 SEARCH ALL WS-Reserved-Word-TXT
 2900 GC0712 WHEN WS-RW-Word-TXT (WS-RW-IDX) = 'LENGTH'
 2901 GC0712 MOVE 'I' TO WS-RW-Type-CD (WS-RW-IDX)
 2902 GC0712 END-SEARCH
 2903 EXIT SECTION
 2904 END-IF
 2905 GC0313 IF WS-TT-Token-Is-Identifier-BOOL
 2906 GC0313 AND WS-Token-Prev-TXT = SPACES
 2907 GC0313 AND WS-Curr-Verb-TXT = SPACES
 2908 GC0313*> ----- Definition of a Paragraph or Section
 2909 GC0313 PERFORM 360-Release-Def
 2910 GC0313 MOVE SPACES TO WS-Token-Prev-TXT
 2911 GC0313 EXIT SECTION
 2912 GC0313 END-IF
 2913 GC0712 IF WS-Token-Curr-TXT = 'CALL'
 2914 GC0712 SET WS-Argument-Is-Updatable-BOOL TO TRUE
 2915 GC0712 END-IF
 2916 GC0712 IF WS-Curr-Verb-TXT = 'CALL'
 2917 GC0712 IF WS-TT-Token-Is-Argtype-BOOL
 2918 GC0712 IF WS-Token-Curr-TXT = 'REFERENCE'
 2919 GC0712 SET WS-Argument-Is-Updatable-BOOL TO TRUE
 2920 GC0712 ELSE
 2921 GC0712 SET WS-Argument-Is-Updatable-BOOL TO FALSE
 2922 GC0712 END-IF
 2923 GC0712 EXIT SECTION
 2924 GC0712 END-IF
 2925 GC0712 ELSE
 2926 GC0712 SET WS-Argument-Is-Updatable-BOOL TO FALSE
 2927 GC0712 END-IF
 2928 IF NOT WS-TT-Token-Is-Identifier-BOOL
 2929 EXIT SECTION
 2930 END-IF
 2931 EVALUATE WS-Curr-Verb-TXT
 2932 WHEN 'ACCEPT'
 2933 PERFORM 351-ACCEPT
 2934 WHEN 'ADD'
 2935 PERFORM 351-ADD
 2936 WHEN 'ALLOCATE'
 2937 PERFORM 351-ALLOCATE
 2938 WHEN 'CALL'
 2939 PERFORM 351-CALL

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-84

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 69
====== ==
 2940 WHEN 'COMPUTE'
 2941 PERFORM 351-COMPUTE
 2942 WHEN 'DIVIDE'
 2943 PERFORM 351-DIVIDE
 2944 WHEN 'FREE'
 2945 PERFORM 351-FREE
 2946 WHEN 'INITIALIZE'
 2947 PERFORM 351-INITIALIZE
 2948 WHEN 'INSPECT'
 2949 PERFORM 351-INSPECT
 2950 WHEN 'MOVE'
 2951 PERFORM 351-MOVE
 2952 WHEN 'MULTIPLY'
 2953 PERFORM 351-MULTIPLY
 2954 WHEN 'PERFORM'
 2955 PERFORM 351-PERFORM
 2956 WHEN 'SET'
 2957 PERFORM 351-SET
 2958 WHEN 'STRING'
 2959 PERFORM 351-STRING
 2960 WHEN 'SUBTRACT'
 2961 PERFORM 351-SUBTRACT
 2962 WHEN 'TRANSFORM'
 2963 PERFORM 351-TRANSFORM
 2964 WHEN 'UNSTRING'
 2965 PERFORM 351-UNSTRING
 2966 WHEN OTHER
 2967 PERFORM 361-Release-Ref
 2968 END-EVALUATE
 2969 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-85

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 70
====== ==
 2970 /
 2971 351-ACCEPT SECTION.
 2972 EVALUATE WS-Token-Prev-TXT
 2973 WHEN 'ACCEPT'
 2974 PERFORM 362-Release-Upd
 2975 MOVE SPACES TO WS-Token-Prev-TXT
 2976 WHEN OTHER
 2977 PERFORM 361-Release-Ref
 2978 END-EVALUATE
 2979 .
 2980
 2981 351-ADD SECTION.
 2982 EVALUATE WS-Token-Prev-TXT
 2983 WHEN 'GIVING'
 2984 PERFORM 362-Release-Upd
 2985 WHEN 'TO'
 2986 PERFORM 362-Release-Upd
 2987 WHEN OTHER
 2988 PERFORM 361-Release-Ref
 2989 END-EVALUATE
 2990 .
 2991
 2992 351-ALLOCATE SECTION.
 2993 EVALUATE WS-Token-Prev-TXT
 2994 WHEN 'ALLOCATE'
 2995 PERFORM 362-Release-Upd
 2996 MOVE SPACES TO WS-Token-Prev-TXT
 2997 WHEN 'RETURNING'
 2998 PERFORM 362-Release-Upd
 2999 WHEN OTHER
 3000 PERFORM 361-Release-Ref
 3001 END-EVALUATE
 3002 .
 3003
 3004 351-CALL SECTION.
 3005 EVALUATE WS-Token-Prev-TXT
 3006 WHEN 'RETURNING'
 3007 PERFORM 362-Release-Upd
 3008 WHEN 'GIVING'
 3009 PERFORM 362-Release-Upd
 3010 WHEN OTHER
 3011 GC0712 IF WS-Argument-Is-Updatable-BOOL
 3012 GC0712 PERFORM 362-Release-Upd
 3013 GC0712 ELSE
 3014 GC0712 PERFORM 361-Release-Ref
 3015 GC0712 END-IF
 3016 END-EVALUATE
 3017 .
 3018
 3019 351-COMPUTE SECTION.
 3020 EVALUATE WS-Token-Prev-TXT
 3021 WHEN 'COMPUTE'
 3022 PERFORM 362-Release-Upd
 3023 WHEN OTHER

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-86

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 71
====== ==
 3024 PERFORM 361-Release-Ref
 3025 END-EVALUATE
 3026 .
 3027
 3028 351-DIVIDE SECTION.
 3029 EVALUATE WS-Token-Prev-TXT
 3030 WHEN 'INTO'
 3031 PERFORM 363-Set-Upd
 3032 MOVE F-Sort-Work-REC TO WS-Held-Reference-TXT
 3033 WHEN 'GIVING'
 3034 IF WS-Held-Reference-TXT NOT = SPACES
 3035 MOVE WS-Held-Reference-TXT To F-Sort-Work-REC
 3036 MOVE SPACES To WS-Held-Reference-TXT
 3037 F-SW-Ref-Flag-CHR
 3038 RELEASE F-Sort-Work-REC
 3039 END-IF
 3040 PERFORM 362-Release-Upd
 3041 WHEN 'REMAINDER'
 3042 PERFORM 362-Release-Upd
 3043 WHEN OTHER
 3044 PERFORM 361-Release-Ref
 3045 END-EVALUATE
 3046 .
 3047
 3048 351-FREE SECTION.
 3049 PERFORM 362-Release-Upd
 3050 .
 3051
 3052 351-INITIALIZE SECTION.
 3053 EVALUATE WS-Token-Prev-TXT
 3054 WHEN 'INITIALIZE'
 3055 PERFORM 362-Release-Upd
 3056 WHEN 'REPLACING'
 3057 PERFORM 361-Release-Ref
 3058 END-EVALUATE
 3059 .
 3060
 3061 351-INSPECT SECTION.
 3062 EVALUATE WS-Token-Prev-TXT
 3063 WHEN 'INSPECT'
 3064 PERFORM 364-Set-Ref
 3065 MOVE SPACES TO WS-Held-Reference-TXT
 3066 MOVE SPACES TO WS-Token-Prev-TXT
 3067 WHEN 'TALLYING'
 3068 PERFORM 362-Release-Upd
 3069 MOVE SPACES TO WS-Token-Prev-TXT
 3070 WHEN 'REPLACING'
 3071 IF WS-Held-Reference-TXT NOT = SPACES
 3072 MOVE WS-Held-Reference-TXT TO F-Sort-Work-REC
 3073 MOVE SPACES TO WS-Held-Reference-TXT
 3074 MOVE '*' TO F-SW-Ref-Flag-CHR
 3075 RELEASE F-Sort-Work-REC
 3076 END-IF
 3077 MOVE SPACES TO WS-Token-Prev-TXT

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-87

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 72
====== ==
 3078 WHEN 'CONVERTING'
 3079 IF WS-Held-Reference-TXT NOT = SPACES
 3080 MOVE WS-Held-Reference-TXT TO F-Sort-Work-REC
 3081 MOVE SPACES TO WS-Held-Reference-TXT
 3082 MOVE '*' TO F-SW-Ref-Flag-CHR
 3083 RELEASE F-Sort-Work-REC
 3084 END-IF
 3085 MOVE SPACES TO WS-Token-Prev-TXT
 3086 WHEN OTHER
 3087 PERFORM 361-Release-Ref
 3088 END-EVALUATE
 3089 .
 3090
 3091 351-MOVE SECTION.
 3092 EVALUATE WS-Token-Prev-TXT
 3093 WHEN 'TO'
 3094 PERFORM 362-Release-Upd
 3095 WHEN OTHER
 3096 PERFORM 361-Release-Ref
 3097 END-EVALUATE
 3098 .
 3099
 3100 351-MULTIPLY SECTION.
 3101 EVALUATE WS-Token-Prev-TXT
 3102 WHEN 'BY'
 3103 PERFORM 363-Set-Upd
 3104 MOVE F-Sort-Work-REC TO WS-Held-Reference-TXT
 3105 WHEN 'GIVING'
 3106 MOVE WS-Held-Reference-TXT TO F-Sort-Work-REC
 3107 MOVE SPACES TO WS-Held-Reference-TXT
 3108 F-SW-Ref-Flag-CHR
 3109 RELEASE F-Sort-Work-REC
 3110 PERFORM 362-Release-Upd
 3111 WHEN OTHER
 3112 PERFORM 361-Release-Ref
 3113 END-EVALUATE
 3114 .
 3115
 3116 351-PERFORM SECTION.
 3117 EVALUATE WS-Token-Prev-TXT
 3118 WHEN 'VARYING'
 3119 PERFORM 362-Release-Upd
 3120 MOVE SPACES TO WS-Token-Prev-TXT
 3121 WHEN 'AFTER'
 3122 PERFORM 362-Release-Upd
 3123 MOVE SPACES TO WS-Token-Prev-TXT
 3124 WHEN OTHER
 3125 PERFORM 361-Release-Ref
 3126 END-EVALUATE
 3127 .
 3128
 3129 351-SET SECTION.
 3130 EVALUATE WS-Token-Prev-TXT
 3131 WHEN 'SET'

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-88

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 73
====== ==
 3132 PERFORM 362-Release-Upd
 3133 WHEN OTHER
 3134 PERFORM 361-Release-Ref
 3135 END-EVALUATE
 3136 .
 3137
 3138 351-STRING SECTION.
 3139 EVALUATE WS-Token-Prev-TXT
 3140 WHEN 'INTO'
 3141 PERFORM 362-Release-Upd
 3142 WHEN 'POINTER'
 3143 PERFORM 362-Release-Upd
 3144 WHEN OTHER
 3145 PERFORM 361-Release-Ref
 3146 END-EVALUATE
 3147 .
 3148
 3149 351-SUBTRACT SECTION.
 3150 EVALUATE WS-Token-Prev-TXT
 3151 WHEN 'GIVING'
 3152 PERFORM 362-Release-Upd
 3153 WHEN 'FROM'
 3154 PERFORM 362-Release-Upd
 3155 WHEN OTHER
 3156 PERFORM 361-Release-Ref
 3157 END-EVALUATE
 3158 .
 3159
 3160 351-TRANSFORM SECTION.
 3161 EVALUATE WS-Token-Prev-TXT
 3162 WHEN 'TRANSFORM'
 3163 PERFORM 362-Release-Upd
 3164 MOVE SPACES TO WS-Token-Prev-TXT
 3165 WHEN OTHER
 3166 PERFORM 361-Release-Ref
 3167 END-EVALUATE
 3168 .
 3169
 3170 351-UNSTRING SECTION.
 3171 EVALUATE WS-Token-Prev-TXT
 3172 WHEN 'INTO'
 3173 PERFORM 362-Release-Upd
 3174 WHEN 'DELIMITER'
 3175 PERFORM 362-Release-Upd
 3176 WHEN 'COUNT'
 3177 PERFORM 362-Release-Upd
 3178 WHEN 'POINTER'
 3179 PERFORM 362-Release-Upd
 3180 WHEN 'TALLYING'
 3181 PERFORM 362-Release-Upd
 3182 WHEN OTHER
 3183 PERFORM 361-Release-Ref
 3184 END-EVALUATE
 3185 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-89

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 74
====== ==
 3186
 3187 360-Release-Def SECTION.
 3188 MOVE SPACES TO F-Sort-Work-REC
 3189 MOVE WS-Curr-Prog-ID-TXT TO F-SW-Prog-ID-TXT
 3190 MOVE WS-Token-Curr-Uc-TXT TO F-SW-Token-Uc-TXT
 3191 MOVE WS-Token-Curr-TXT TO F-SW-Token-TXT
 3192 MOVE WS-Curr-Section-TXT TO F-SW-Section-TXT
 3193 MOVE WS-Curr-Line-NUM TO F-SW-Def-Line-NUM
 3194 MOVE 0 TO F-SW-Ref-Line-NUM
 3195 RELEASE F-Sort-Work-REC
 3196 .
 3197
 3198 361-Release-Ref SECTION.
 3199 PERFORM 364-Set-Ref
 3200 RELEASE F-Sort-Work-REC
 3201 .
 3202
 3203 362-Release-Upd SECTION.
 3204 PERFORM 363-Set-Upd
 3205 RELEASE F-Sort-Work-REC
 3206 .
 3207
 3208 363-Set-Upd SECTION.
 3209 MOVE SPACES TO F-Sort-Work-REC
 3210 MOVE WS-Curr-Prog-ID-TXT TO F-SW-Prog-ID-TXT
 3211 MOVE WS-Token-Curr-Uc-TXT TO F-SW-Token-Uc-TXT
 3212 MOVE WS-Token-Curr-TXT TO F-SW-Token-TXT
 3213 MOVE WS-Curr-Section-TXT TO F-SW-Section-TXT
 3214 MOVE WS-Curr-Line-NUM TO F-SW-Ref-Line-NUM
 3215 MOVE '*' TO F-SW-Ref-Flag-CHR
 3216 .
 3217
 3218 364-Set-Ref SECTION.
 3219 MOVE SPACES TO F-Sort-Work-REC
 3220 MOVE WS-Curr-Prog-ID-TXT TO F-SW-Prog-ID-TXT
 3221 MOVE WS-Token-Curr-Uc-TXT TO F-SW-Token-Uc-TXT
 3222 MOVE WS-Token-Curr-TXT TO F-SW-Token-TXT
 3223 MOVE WS-Curr-Section-TXT TO F-SW-Section-TXT
 3224 MOVE WS-Curr-Line-NUM TO F-SW-Ref-Line-NUM
 3225 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-90

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 75
====== ==
 3226 /
 3227 400-Produce-Xref-Listing SECTION.
 3228 MOVE SPACES TO WS-Xref-Detail-Line-TXT
 3229 WS-Group-Indicators-TXT
 3230 MOVE 0 TO WS-I-SUB
 3231 WS-Lines-Left-NUM
 3232 GC0710 MOVE 'N' TO WS-RS-Duplicate-CHR
 3233 PERFORM FOREVER
 3234 RETURN F-Sort-Work-FILE AT END
 3235 EXIT PERFORM
 3236 END-RETURN
 3237 IF F-SW-Prog-ID-TXT NOT = WS-GI-Prog-ID-TXT
 3238 OR F-SW-Token-Uc-TXT NOT = WS-GI-Token-TXT
 3239 GC0710 MOVE 'N' TO WS-RS-Duplicate-CHR
 3240 IF WS-Xref-Detail-Line-TXT NOT = SPACES
 3241 PERFORM 410-Generate-Report-Line
 3242 END-IF
 3243 IF F-SW-Prog-ID-TXT NOT = WS-GI-Prog-ID-TXT
 3244 MOVE 0 TO WS-Lines-Left-NUM
 3245 END-IF
 3246 MOVE F-SW-Prog-ID-TXT TO WS-GI-Prog-ID-TXT
 3247 MOVE F-SW-Token-Uc-TXT TO WS-GI-Token-TXT
 3248 END-IF
 3249 GC0710 IF F-SW-Token-Uc-TXT = WS-GI-Token-TXT
 3250 GC0710 AND F-SW-Def-Line-NUM NOT = SPACES
 3251 GC0710 AND WS-Xref-Detail-Line-TXT NOT = SPACES
 3252 GC0710 MOVE 'Y' TO WS-RS-Duplicate-CHR
 3253 GC0710 PERFORM 410-Generate-Report-Line
 3254 GC0710 MOVE 0 TO WS-I-SUB
 3255 GC0710 MOVE F-SW-Prog-ID-TXT TO WS-XDL-Prog-ID-TXT
 3256 GC0710 MOVE ' (Duplicate Definition)' TO WS-XDL-Token-TXT
 3257 GC0710 MOVE F-SW-Section-TXT TO WS-XDL-Section-TXT
 3258 GC0710 MOVE F-SW-Def-Line-NUM TO WS-XDL-Def-Line-NUM
 3259 GC0710 EXIT PERFORM CYCLE
 3260 GC0710 END-IF
 3261 GC0710 IF F-SW-Token-Uc-TXT = WS-GI-Token-TXT
 3262 GC0710 AND F-SW-Def-Line-NUM = SPACES
 3263 GC0710 AND WS-RS-Duplicate-CHR = 'Y'
 3264 GC0710 MOVE 'N' TO WS-RS-Duplicate-CHR
 3265 GC0710 PERFORM 410-Generate-Report-Line
 3266 GC0710 MOVE 0 TO WS-I-SUB
 3267 GC0710 MOVE F-SW-Prog-ID-TXT TO WS-XDL-Prog-ID-TXT
 3268 GC0710 MOVE ' (Duplicate References)' TO WS-XDL-Token-TXT
 3269 GC0710 END-IF
 3270 IF WS-Xref-Detail-Line-TXT = SPACES
 3271 MOVE F-SW-Prog-ID-TXT TO WS-XDL-Prog-ID-TXT
 3272 MOVE F-SW-Token-TXT TO WS-XDL-Token-TXT
 3273 MOVE F-SW-Section-TXT TO WS-XDL-Section-TXT
 3274 IF F-SW-Def-Line-NUM NOT = SPACES
 3275 MOVE F-SW-Def-Line-NUM TO WS-XDL-Def-Line-NUM
 3276 END-IF
 3277 END-IF
 3278 IF F-SW-Reference-TXT > '000000'
 3279 ADD 1 TO WS-I-SUB

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-91

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 76
====== ==
 3280 IF WS-I-SUB > WS-Lines-Per-Rec-CONST
 3281 PERFORM 410-Generate-Report-Line
 3282 MOVE 1 TO WS-I-SUB
 3283 END-IF
 3284 MOVE F-SW-Ref-Line-NUM
 3285 TO WS-XDL-Ref-Line-NUM (WS-I-SUB)
 3286 MOVE F-SW-Ref-Flag-CHR
 3287 TO WS-XDL-Ref-Flag-CHR (WS-I-SUB)
 3288 END-IF
 3289 END-PERFORM
 3290 IF WS-Xref-Detail-Line-TXT NOT = SPACES
 3291 PERFORM 410-Generate-Report-Line
 3292 END-IF
 3293 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-92

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 77
====== ==
 3294 /
 3295 410-Generate-Report-Line SECTION.
 3296 IF WS-Lines-Left-NUM < 1
 3297 GC0712 MOVE SPACES TO F-Listing-REC
 3298 GC0712 WRITE F-Listing-REC BEFORE PAGE
 3299 GC0712 MOVE SPACES TO F-Listing-REC
 3300 GC0712 WRITE F-Listing-REC BEFORE 1
 3301 GC0712 WRITE F-Listing-REC FROM WS-Xref-Header-1-TXT BEFORE 1
 3302 GC0712 ADD 1 TO WS-Page-NUM
 3303 GC0712 MOVE 'Page:' TO WS-PN-Literal-TXT
 3304 GC0712 MOVE WS-Page-NUM TO WS-PN-Page-NUM
 3305 GC0712 CALL 'C$JUSTIFY' USING WS-PN-Page-NUM, 'Left'
 3306 GC0712 CALL 'C$JUSTIFY' USING WS-Page-No-TXT, 'Right'
 3307 GC0712 MOVE WS-Page-No-TXT TO WS-XH3-Page-No-TXT
 3308 GC0712 WRITE F-Listing-REC FROM WS-Xref-Header-2-TXT BEFORE 1
 3309 GC0712 WRITE F-Listing-REC FROM WS-Xref-Header-3-TXT BEFORE 1
 3310 GC0712 WRITE F-Listing-REC FROM WS-Xref-Header-4-TXT BEFORE 1
 3311 COMPUTE WS-Lines-Left-NUM = WS-Lines-Per-Page-NUM - 4
 3312 END-IF
 3313 GC0712 WRITE F-Listing-REC FROM WS-Xref-Detail-Line-TXT BEFORE 1
 3314 MOVE SPACES TO WS-Xref-Detail-Line-TXT
 3315 MOVE 0 TO WS-I-SUB
 3316 SUBTRACT 1 FROM WS-Lines-Left-NUM
 3317 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-93

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 78
====== ==
 3318 /
 3319 500-Produce-Source-Listing SECTION.
 3320 OPEN INPUT F-Original-Src-FILE
 3321 F-Expanded-Src-FILE
 3322 MOVE 0 TO WS-Src-Line-NUM
 3323 PERFORM FOREVER
 3324 READ F-Expanded-Src-FILE AT END
 3325 EXIT PERFORM
 3326 END-READ
 3327 GC0712 IF F-ES-1-7-TXT NOT = '#DEFLIT'
 3328 GC0712 IF F-ES-1-CHR = '#'
 3329 GC0712 PERFORM 510-Control-Record
 3330 GC0712 ELSE
 3331 GC0712 PERFORM 520-Expanded-Src-Record
 3332 GC0712 END-IF
 3333 GC0712 END-IF
 3334 END-PERFORM
 3335 CLOSE F-Original-Src-FILE
 3336 F-Expanded-Src-FILE
 3337 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-94

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 79
====== ==
 3338 /
 3339 510-Control-Record SECTION.
 3340 UNSTRING F-ES-2-256-TXT-256
 3341 DELIMITED BY '"'
 3342 INTO WS-Temp-10-Chars-TXT
 3343 WS-Temp-256-Chars-TXT
 3344 WS-Dummy-TXT
 3345 GC1010 IF UPPER-CASE(TRIM(WS-Temp-256-Chars-TXT,Trailing)) =
 3346 GC1010 TRIM(WS-Main-Module-Name-TXT) *> Main Pgm
 3347 SET WS-RS-In-Main-Module-BOOL TO TRUE
 3348 IF WS-Src-Line-NUM > 0
 3349 READ F-Expanded-Src-FILE END-READ
 3350 END-IF
 3351 ELSE *> COPY
 3352 SET WS-RS-In-Copybook-BOOL TO TRUE
 3353 END-IF
 3354 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-95

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 80
====== ==
 3355 /
 3356 520-Expanded-Src-Record SECTION.
 3357 IF WS-RS-In-Main-Module-BOOL
 3358 ADD 1 To WS-Curr-Line-NUM
 3359 GC0712 READ F-Original-Src-FILE AT END CONTINUE END-READ
 3360 ADD 1 TO WS-Src-Line-NUM
 3361 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3362 MOVE WS-Src-Line-NUM TO WS-SDL-Line-NUM
 3363 MOVE F-OS-1-128-TXT TO WS-SDL-Statement-TXT
 3364 GC0712 MOVE LOWER-CASE(TRIM(F-OS-8-72-TXT,LEADING))
 3365 GC0712 TO WS-Temp-65-Chars-TXT
 3366 GC0712 INSPECT WS-Temp-65-Chars-TXT REPLACING ALL '.' BY SPACE
 3367 GC0712 EVALUATE TRUE
 3368 GC0712 WHEN F-OS-7-CHR = '/'
 3369 GC0712 MOVE 0 TO WS-Lines-Left-NUM
 3370 GC0712 WHEN WS-Temp-65-Chars-TXT = "eject"
 3371 GC0712 MOVE 0 TO WS-Lines-Left-NUM
 3372 GC0712 EXIT SECTION
 3373 GC0712 WHEN WS-Temp-65-Chars-TXT = "skip1"
 3374 GC0712 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3375 GC0712 PERFORM 530-Generate-Source-Line
 3376 GC0712 EXIT SECTION
 3377 GC0712 WHEN WS-Temp-65-Chars-TXT = "skip2"
 3378 GC0712 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3379 GC0712 PERFORM 530-Generate-Source-Line 2 TIMES
 3380 GC0712 EXIT SECTION
 3381 GC0712 WHEN WS-Temp-65-Chars-TXT = "skip3"
 3382 GC0712 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3383 GC0712 PERFORM 530-Generate-Source-Line 3 TIMES
 3384 GC0712 EXIT SECTION
 3385 GC0712 END-EVALUATE
 3386 PERFORM 530-Generate-Source-Line
 3387 IF F-OS-129-256-TXT NOT = SPACES
 3388 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3389 MOVE F-OS-129-256-TXT TO WS-SDL-Statement-TXT
 3390 PERFORM 530-Generate-Source-Line
 3391 END-IF
 3392 ELSE
 3393 IF F-Expanded-Src-REC NOT = SPACES
 3394 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3395 MOVE F-Expanded-Src-REC(1:128)
 3396 TO WS-SDL-Statement-TXT
 3397 GC0712 MOVE LOWER-CASE(TRIM(F-OS-8-72-TXT,LEADING))
 3398 GC0712 TO WS-Temp-65-Chars-TXT
 3399 GC0712 INSPECT WS-Temp-65-Chars-TXT
 3400 GC0712 REPLACING ALL '.' BY SPACE
 3401 GC0712 EVALUATE TRUE
 3402 GC0712 WHEN WS-Temp-65-Chars-TXT = "eject"
 3403 GC0712 MOVE 0 TO WS-Lines-Left-NUM
 3404 GC0712 EXIT SECTION
 3405 GC0712 WHEN WS-Temp-65-Chars-TXT = "skip1"
 3406 GC0712 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3407 GC0712 PERFORM 530-Generate-Source-Line
 3408 GC0712 EXIT SECTION

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-96

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 81
====== ==
 3409 GC0712 WHEN WS-Temp-65-Chars-TXT = "skip2"
 3410 GC0712 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3411 GC0712 PERFORM 530-Generate-Source-Line 2 TIMES
 3412 GC0712 EXIT SECTION
 3413 GC0712 WHEN WS-Temp-65-Chars-TXT = "skip3"
 3414 GC0712 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3415 GC0712 PERFORM 530-Generate-Source-Line 3 TIMES
 3416 GC0712 EXIT SECTION
 3417 GC0712 END-EVALUATE
 3418 PERFORM 530-Generate-Source-Line
 3419 IF F-Expanded-Src-REC(129:128) NOT = SPACES
 3420 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3421 MOVE F-Expanded-Src-REC(129:128)
 3422 TO WS-SDL-Statement-TXT
 3423 PERFORM 530-Generate-Source-Line
 3424 END-IF
 3425 END-IF
 3426 END-IF
 3427 .

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-97

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
Line Statement Page: 82
====== ==
 3428 /
 3429 530-Generate-Source-Line SECTION.
 3430 IF WS-Lines-Left-NUM < 1
 3431 GC0712 WRITE F-Listing-REC FROM SPACES BEFORE PAGE
 3432 GC0712 WRITE F-Listing-REC FROM SPACES BEFORE 1
 3433 GC0712 WRITE F-Listing-REC FROM WS-Src-Header-1-TXT BEFORE 1
 3434 GC0712 ADD 1 TO WS-Page-NUM
 3435 GC0712 MOVE 'Page:' TO WS-PN-Literal-TXT
 3436 GC0712 MOVE WS-Page-NUM TO WS-PN-Page-NUM
 3437 GC0712 CALL 'C$JUSTIFY' USING WS-PN-Page-NUM, 'Left'
 3438 GC0712 CALL 'C$JUSTIFY' USING WS-Page-No-TXT, 'Right'
 3439 GC0712 MOVE WS-Page-No-TXT TO WS-SH3-Page-No-TXT
 3440 WRITE F-Listing-REC FROM WS-Src-Header-2-TXT BEFORE 1
 3441 GC0712 WRITE F-Listing-REC FROM WS-Src-Header-3-TXT BEFORE 1
 3442 GC0712 WRITE F-Listing-REC FROM WS-Src-Header-4-TXT BEFORE 1
 3443 COMPUTE WS-Lines-Left-NUM = WS-Lines-Per-Page-NUM - 4
 3444 END-IF
 3445 GC0712 WRITE F-Listing-REC FROM WS-Src-Detail-Line-TXT BEFORE 1
 3446 MOVE SPACES TO WS-Src-Detail-Line-TXT
 3447 SUBTRACT 1 FROM WS-Lines-Left-NUM
 3448 .
 3449
 3450 END PROGRAM LISTING.

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-98

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 83
=============== ================================ ====== =============== ===
CHECKSRC 000-Main 1294 PROCEDURE
CHECKSRC L-A1-CHR 1284 LINKAGE 1296 1308 1311 1318
CHECKSRC L-A2-IDENT-DIVISION-BOOL 1289 LINKAGE 1340*
CHECKSRC L-A2-LINKAGE-SECTION-BOOL 1288 LINKAGE 1334*
CHECKSRC L-A2-Nothing-Special-BOOL 1290 LINKAGE 1295*
CHECKSRC L-Argument-1-TXT 1283 LINKAGE 1292
CHECKSRC L-Argument-2-CHR 1287 LINKAGE 1293
CHECKSRC UPPER-CASE PROCEDURE 1311
CHECKSRC WS-Compressed-Src-TXT 1270 WORKING-STORAGE 1305* 1328 1332 1338
CHECKSRC WS-CS-CHR 1271 WORKING-STORAGE 1312* 1318* 1327 1331 1337
CHECKSRC WS-I-SUB 1279 WORKING-STORAGE 1306* 1307 1308 1311 1318 1324* 1325 1327
 1328 1331 1331 1332 1337 1337 1338
CHECKSRC WS-J-SUB 1281 WORKING-STORAGE 1304* 1310* 1312 1317* 1318
CHECKSRC WS-RS-Found-SPACE-CHR 1275 WORKING-STORAGE
CHECKSRC WS-RS-Not-Skipping-SPACE-BOOL 1277 WORKING-STORAGE 1303* 1309 1316*
CHECKSRC WS-RS-Skipping-SPACE-BOOL 1276 WORKING-STORAGE 1313*
CHECKSRC WS-Runtime-Switches-TXT 1274 WORKING-STORAGE

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-99

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 84
=============== ================================ ====== =============== ===
GCic 000-File-Error 642 PROCEDURE
GCic 000-Main 663 PROCEDURE
GCic 100-Initialization 688 PROCEDURE 664
GCic 200-Let-User-Set-Switches 800 PROCEDURE 667
GCic 210-Run-Compiler 881 PROCEDURE 668
GCic 220-Make-Listing 1017 PROCEDURE 672
GCic 230-Run-Program 1045 PROCEDURE 676
GCic 240-Find-LINKAGE-SECTION 1152 PROCEDURE 734
GCic 250-Autoload-Listing 1191 PROCEDURE 678 1008 1039
GCic 900-Terminate 1237 PROCEDURE 680 728 861 1009 1145
GCic COB-COLOR-BLACK 170 [screenio] 427 432 522 532 542 547 557 564
 579 594 610 617 624
GCic COB-COLOR-BLUE 170 [screenio] 510
GCic COB-COLOR-CYAN 170 [screenio] 523
GCic COB-COLOR-GREEN 170 [screenio] 433 548 595 611
GCic COB-COLOR-MAGENTA 170 [screenio]
GCic COB-COLOR-RED 170 [screenio] 516 580
GCic COB-COLOR-WHITE 170 [screenio] 428 511 517 533 543 558 565 618
 625
GCic COB-COLOR-YELLOW 170 [screenio]
GCic COB-CRT-STATUS PROCEDURE 804 805
GCic COB-SCR-ESC 170 [screenio] 860
GCic COB-SCR-F1 170 [screenio] 806
GCic COB-SCR-F10 170 [screenio]
GCic COB-SCR-F11 170 [screenio]
GCic COB-SCR-F12 170 [screenio] 863
GCic COB-SCR-F13 170 [screenio]
GCic COB-SCR-F14 170 [screenio]
GCic COB-SCR-F15 170 [screenio]
GCic COB-SCR-F16 170 [screenio]
GCic COB-SCR-F17 170 [screenio]
GCic COB-SCR-F18 170 [screenio]
GCic COB-SCR-F19 170 [screenio]
GCic COB-SCR-F2 170 [screenio] 812
GCic COB-SCR-F20 170 [screenio]
GCic COB-SCR-F21 170 [screenio]
GCic COB-SCR-F22 170 [screenio]
GCic COB-SCR-F23 170 [screenio]
GCic COB-SCR-F24 170 [screenio]
GCic COB-SCR-F25 170 [screenio]
GCic COB-SCR-F26 170 [screenio]
GCic COB-SCR-F27 170 [screenio]
GCic COB-SCR-F28 170 [screenio]
GCic COB-SCR-F29 170 [screenio]
GCic COB-SCR-F3 170 [screenio] 818
GCic COB-SCR-F30 170 [screenio]
GCic COB-SCR-F31 170 [screenio]
GCic COB-SCR-F32 170 [screenio]
GCic COB-SCR-F33 170 [screenio]
GCic COB-SCR-F34 170 [screenio]
GCic COB-SCR-F35 170 [screenio]
GCic COB-SCR-F36 170 [screenio]
GCic COB-SCR-F37 170 [screenio]
GCic COB-SCR-F38 170 [screenio]

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-100

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 85
=============== ================================ ====== =============== ===
GCic COB-SCR-F39 170 [screenio]
GCic COB-SCR-F4 170 [screenio] 824
GCic COB-SCR-F40 170 [screenio]
GCic COB-SCR-F41 170 [screenio]
GCic COB-SCR-F42 170 [screenio]
GCic COB-SCR-F43 170 [screenio]
GCic COB-SCR-F44 170 [screenio]
GCic COB-SCR-F45 170 [screenio]
GCic COB-SCR-F46 170 [screenio]
GCic COB-SCR-F47 170 [screenio]
GCic COB-SCR-F48 170 [screenio]
GCic COB-SCR-F49 170 [screenio]
GCic COB-SCR-F5 170 [screenio] 830
GCic COB-SCR-F50 170 [screenio]
GCic COB-SCR-F51 170 [screenio]
GCic COB-SCR-F52 170 [screenio]
GCic COB-SCR-F53 170 [screenio]
GCic COB-SCR-F54 170 [screenio]
GCic COB-SCR-F55 170 [screenio]
GCic COB-SCR-F56 170 [screenio]
GCic COB-SCR-F57 170 [screenio]
GCic COB-SCR-F58 170 [screenio]
GCic COB-SCR-F59 170 [screenio]
GCic COB-SCR-F6 170 [screenio] 836
GCic COB-SCR-F60 170 [screenio]
GCic COB-SCR-F61 170 [screenio]
GCic COB-SCR-F62 170 [screenio]
GCic COB-SCR-F63 170 [screenio]
GCic COB-SCR-F64 170 [screenio]
GCic COB-SCR-F7 170 [screenio] 842
GCic COB-SCR-F8 170 [screenio] 848
GCic COB-SCR-F9 170 [screenio] 854
GCic COB-SCR-FATAL 170 [screenio]
GCic COB-SCR-KEY-DOWN 170 [screenio]
GCic COB-SCR-KEY-UP 170 [screenio]
GCic COB-SCR-MAX-FIELD 170 [screenio]
GCic COB-SCR-NO-FIELD 170 [screenio]
GCic COB-SCR-OK 170 [screenio]
GCic COB-SCR-PAGE_DOWN 170 [screenio]
GCic COB-SCR-PAGE_UP 170 [screenio]
GCic COB-SCR-PRINT 170 [screenio]
GCic COB-SCR-TIME-OUT 170 [screenio]
GCic CONCATENATE PROCEDURE 789 968 990 996 1215 1218 1222* 1224*
 1226* 1228* 1230*
GCic F-Cobc-Output-FILE 163 FILE 154 985 1003
GCic F-Cobc-Output-REC 164 FILE 986 991* 992 1000* 1001
GCic F-Source-Code-FILE 166 FILE 157 643 1153 1157 1158 1171 1172 1179
GCic F-Source-Code-REC 167 FILE 1162 1176
GCic F1 WORKING-STORAGE 198
GCic F12 WORKING-STORAGE 192
GCic F2 WORKING-STORAGE 205
GCic F3 WORKING-STORAGE 201
GCic F4 WORKING-STORAGE 199
GCic F5 WORKING-STORAGE 202

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-101

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 86
=============== ================================ ====== =============== ===
GCic F6 WORKING-STORAGE 203
GCic F7 WORKING-STORAGE 206
GCic F8 WORKING-STORAGE 200
GCic F9 WORKING-STORAGE 204
GCic LD-Horiz-Line 412 SCREEN 788
GCic LD-LL-Corner 407 SCREEN 444 474 490 504
GCic LD-Lower-T 411 SCREEN 476
GCic LD-LR-Corner 409 SCREEN 446 478 492 506
GCic LD-UL-Corner 406 SCREEN 434 448 480 494
GCic LD-Upper-T 410 SCREEN 450
GCic LD-UR-Corner 408 SCREEN 436 452 482 496
GCic LD-Vert-Line 413 SCREEN 438 439 441 442 454 455 456 458
 459 460 462 463 464 466 467 468
 470 471 472 484 485 487 488 498
 499 501 502
GCic LENGTH PROCEDURE 742 770 1070
GCic LOWER-CASE PROCEDURE 887 1065
GCic RETURN-CODE PROCEDURE 987 1020* 1031* 1033
GCic S-Blank-SCR 425 SCREEN 671 1142 1213 1242
GCic S-Switches-SCR 427 SCREEN 803* 885 975 1004 1019 1037 1239
GCic SELCHAR PROCEDURE 808 814 820 826 832 838 844 850
 856 1181
GCic TRIM PROCEDURE 651 656 761* 790 894 957 962 968
 978 984* 997 1070 1082 1100 1125 1143*
 1197 1199* 1204 1206* 1215 1218 1222* 1224*
 1226* 1228* 1230*
GCic WHEN-COMPILED PROCEDURE 697
GCic WS-Cmd-Args-TXT 221 WORKING-STORAGE 710* 712 713 716 721
GCic WS-Cmd-End-Quote-CHR 223 WORKING-STORAGE 714* 717
GCic WS-Cmd-SUB 225 WORKING-STORAGE 711* 712 713 715* 719* 724*
GCic WS-Cmd-TXT 219 WORKING-STORAGE 882* 977* 982* 984* 1046* 1053* 1063* 1066*
 1073* 1077* 1083* 1088* 1093* 1101* 1109* 1115*
 1121* 1126* 1131* 1135* 1143* 1194* 1198* 1199*
 1201* 1205* 1206* 1216* 1219* 1222* 1224* 1226*
 1228* 1230*
GCic WS-Cobc-Cmd-TXT 227 WORKING-STORAGE 883* 892* 896* 900* 904* 909* 914* 919*
 924* 929* 934* 938* 951* 959* 963* 978
GCic WS-Compilation-Switches-TXT 172 WORKING-STORAGE
GCic WS-Config-Fn-TXT 229 WORKING-STORAGE 888* 894
GCic WS-CS-All-Switches-TXT 207 WORKING-STORAGE
GCic WS-CS-Arg-H1-TXT 174 WORKING-STORAGE 628*
GCic WS-CS-Arg-H2-TXT 175 WORKING-STORAGE 629*
GCic WS-CS-Args-TXT 173 WORKING-STORAGE 1124 1125
GCic WS-CS-Config-NUM 192 WORKING-STORAGE 620 864* 865 866* 887
GCic WS-CS-DEBUG-CHR 209 WORKING-STORAGE 581 807 808* 810* 907
GCic WS-CS-EXECUTE-CHR 210 WORKING-STORAGE 584 674 825 826* 828*
GCic WS-CS-Extra-H1-TXT 195 WORKING-STORAGE 626*
GCic WS-CS-Extra-H2-TXT 196 WORKING-STORAGE 627*
GCic WS-CS-Extra-TXT 194 WORKING-STORAGE 955 957
GCic WS-CS-Filename-TXT 185 WORKING-STORAGE 620 887
GCic WS-CS-Filenames-Table-TXT 184 WORKING-STORAGE
GCic WS-CS-Filenames-TXT 176 WORKING-STORAGE 184
GCic WS-CS-FREE-CHR 211 WORKING-STORAGE 589 849 850* 852* 932
GCic WS-CS-LIBRARY-CHR 212 WORKING-STORAGE 583 819 820* 822* 898 1051 1106 1154*

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-102

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 87
=============== ================================ ====== =============== ===
 1181*
GCic WS-CS-LISTING-CHR 213 WORKING-STORAGE 585 670 831 832* 834* 945 947* 949
GCic WS-CS-NOFUNC-CHR 214 WORKING-STORAGE 587 837 838* 840* 922
GCic WS-CS-NOTRUNC-CHR 215 WORKING-STORAGE 590 855 856* 858* 912
GCic WS-CS-Switch-Defaults-TXT 197 WORKING-STORAGE 208
GCic WS-CS-TRACEALL-CHR 216 WORKING-STORAGE 582 813 814* 816* 917
GCic WS-CS-WARNALL-CHR 217 WORKING-STORAGE 588 843 844* 846* 927
GCic WS-Delete-Fn-TXT 231 WORKING-STORAGE
GCic WS-File-Name-TXT 233 WORKING-STORAGE 157 651 656 718* 723* 726 739 742
 749 752 763 1026*
GCic WS-File-Status-Message-TXT 237 WORKING-STORAGE
GCic WS-FN-CHR 234 WORKING-STORAGE 744 751* 755*
GCic WS-FSM-Msg-TXT 241 WORKING-STORAGE 646* 646* 646* 646* 646* 646* 646* 646*
 646* 646* 646* 646* 646* 646* 646* 646*
 646* 646* 646* 646* 646* 646* 646* 646*
 646* 646* 646* 646* 646* 646*
GCic WS-FSM-Status-CD 239 WORKING-STORAGE 159 646 648
GCic WS-Horizontal-Line-TXT 243 WORKING-STORAGE 435 445 449 451 475 477 481 491
 495 505 788*
GCic WS-I-SUB 245 WORKING-STORAGE 742* 743 744 745 747 751 755 770*
 771 772 773 775 779 783 886* 897*
 901* 905* 910* 915* 920* 925* 930* 935*
 939* 952* 960* 964* 1047* 1054* 1064* 1067*
 1074* 1078* 1084* 1089* 1094* 1102* 1110* 1116*
 1122* 1127* 1132* 1136*
GCic WS-J-SUB 247 WORKING-STORAGE 1069* 1070 1071 1076
GCic WS-Listing-Filename-TXT 249 WORKING-STORAGE 154 969* 970* 979 997 1025* 1197 1204
GCic WS-OC-Compile-DT 251 WORKING-STORAGE 513 697*
GCic WS-OS-Cygwin-BOOL 285 WORKING-STORAGE 739 763 1061 1091 1193
GCic WS-OS-Dir-CHR 260 WORKING-STORAGE 740* 744 755 764* 1087
GCic WS-OS-Exe-Ext-CONST 261 WORKING-STORAGE 1107 1108
GCic WS-OS-Lib-Ext-CONST 262 WORKING-STORAGE 1113 1114
GCic WS-OS-Lib-Type-CONST 263 WORKING-STORAGE 599
GCic WS-OS-OSX-BOOL 287 WORKING-STORAGE 1200
GCic WS-OS-Type-CD 264 WORKING-STORAGE 790 1027*
GCic WS-OS-Type-FILLER-TXT 289 WORKING-STORAGE 295
GCic WS-OS-Type-TXT 296 WORKING-STORAGE 790
GCic WS-OS-Types-TXT 295 WORKING-STORAGE
GCic WS-OS-UNIX-BOOL 286 WORKING-STORAGE 1091
GCic WS-OS-Windows-BOOL 284 WORKING-STORAGE 1129 1193 1214
GCic WS-Output-Msg-TXT 299 WORKING-STORAGE 518 647* 793* 870* 884* 974* 989* 990
 998* 1006* 1018* 1024* 1030* 1035* 1144* 1238
GCic WS-Path-Delimiter-CHR 301 WORKING-STORAGE
GCic WS-PFN-CHR 308 WORKING-STORAGE 772 779* 783*
GCic WS-Pgm-Nm-TXT 311 WORKING-STORAGE 776* 781* 968 1100 1215 1218
GCic WS-Prog-Extension-TXT 303 WORKING-STORAGE 777* 782*
GCic WS-Prog-File-Name-TXT 307 WORKING-STORAGE 559 749* 754* 770 776 780 962
GCic WS-Prog-Folder-TXT 305 WORKING-STORAGE 560 748* 753* 757 758* 761* 1060 1061
 1065 1070 1071 1076 1082
GCic WS-RS-1st-Prog-Complete-BOOL 324 WORKING-STORAGE 1156 1165*
GCic WS-RS-Compile-Failed-BOOL 317 WORKING-STORAGE 995* 1007
GCic WS-RS-Compile-OK-BOOL 315 WORKING-STORAGE 669 988*
GCic WS-RS-Compile-OK-CHR 314 WORKING-STORAGE
GCic WS-RS-Compile-OK-Warn-BOOL 316 WORKING-STORAGE 669

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-103

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 88
=============== ================================ ====== =============== ===
GCic WS-RS-Complete-BOOL 319 WORKING-STORAGE 666 993*
GCic WS-RS-Complete-CHR 318 WORKING-STORAGE
GCic WS-RS-Double-Quote-Used-BOOL 322 WORKING-STORAGE 1059* 1085* 1119
GCic WS-RS-IDENT-DIV-CHR 323 WORKING-STORAGE
GCic WS-RS-More-To-1st-Prog-BOOL 325 WORKING-STORAGE 1155*
GCic WS-RS-No-Switch-Changes-BOOL 327 WORKING-STORAGE 802 873*
GCic WS-RS-No-Switch-Chgs-CHR 326 WORKING-STORAGE
GCic WS-RS-Not-Complete-BOOL 320 WORKING-STORAGE 665*
GCic WS-RS-Output-File-Avail-BOOL 331 WORKING-STORAGE 675 976*
GCic WS-RS-Output-File-Busy-BOOL 330 WORKING-STORAGE
GCic WS-RS-Output-File-Busy-CHR 329 WORKING-STORAGE
GCic WS-RS-Quote-CHR 321 WORKING-STORAGE
GCic WS-RS-Source-Rec-Ident-BOOL 334 WORKING-STORAGE 1164 1170
GCic WS-RS-Source-Rec-Ignored-BOOL 335 WORKING-STORAGE 1168*
GCic WS-RS-Source-Rec-Linkage-BOOL 333 WORKING-STORAGE 1169 1180
GCic WS-RS-Source-Record-Type-CHR 332 WORKING-STORAGE 1163* 1177*
GCic WS-RS-Switch-Changes-BOOL 328 WORKING-STORAGE 801*
GCic WS-RS-Switch-Error-CHR 336 WORKING-STORAGE
GCic WS-RS-Switch-Is-Bad-BOOL 337 WORKING-STORAGE
GCic WS-RS-Switch-Is-Good-BOOL 338 WORKING-STORAGE
GCic WS-Runtime-Switches-TXT 313 WORKING-STORAGE
GCic WS-Tally-QTY 340 WORKING-STORAGE 942* 944* 946

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-104

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 89
=============== ================================ ====== =============== ===
LISTING 000-Main 2393 PROCEDURE
LISTING 100-Initialization 2410 PROCEDURE 2394
LISTING 300-Tokenize-Source 2479 PROCEDURE 2401
LISTING 310-Get-Token 2530 PROCEDURE 2488
LISTING 311-Control-Record 2690 PROCEDURE 2549
LISTING 312-Expanded-Src-Record 2736 PROCEDURE 2551
LISTING 313-Check-For-Numeric-Token 2743 PROCEDURE 2677
LISTING 320-IDENTIFICATION-DIVISION 2785 PROCEDURE 2509
LISTING 330-ENVIRONMENT-DIVISION 2809 PROCEDURE 2511
LISTING 340-DATA-DIVISION 2832 PROCEDURE 2513
LISTING 350-PROCEDURE-DIVISION 2887 PROCEDURE 2515
LISTING 351-ACCEPT 2971 PROCEDURE 2933
LISTING 351-ADD 2981 PROCEDURE 2935
LISTING 351-ALLOCATE 2992 PROCEDURE 2937
LISTING 351-CALL 3004 PROCEDURE 2939
LISTING 351-COMPUTE 3019 PROCEDURE 2941
LISTING 351-DIVIDE 3028 PROCEDURE 2943
LISTING 351-FREE 3048 PROCEDURE 2945
LISTING 351-INITIALIZE 3052 PROCEDURE 2947
LISTING 351-INSPECT 3061 PROCEDURE 2949
LISTING 351-MOVE 3091 PROCEDURE 2951
LISTING 351-MULTIPLY 3100 PROCEDURE 2953
LISTING 351-PERFORM 3116 PROCEDURE 2955
LISTING 351-SET 3129 PROCEDURE 2957
LISTING 351-STRING 3138 PROCEDURE 2959
LISTING 351-SUBTRACT 3149 PROCEDURE 2961
LISTING 351-TRANSFORM 3160 PROCEDURE 2963
LISTING 351-UNSTRING 3170 PROCEDURE 2965
LISTING 360-Release-Def 3187 PROCEDURE 2825 2863 2866 2869 2872 2909
LISTING 361-Release-Ref 3198 PROCEDURE 2827 2881 2967 2977 2988 3000 3014 3024
 3044 3057 3087 3096 3112 3125 3134 3145
 3156 3166 3183
LISTING 362-Release-Upd 3203 PROCEDURE 2875 2878 2974 2984 2986 2995 2998 3007
 3009 3012 3022 3040 3042 3049 3055 3068
 3094 3110 3119 3122 3132 3141 3143 3152
 3154 3163 3173 3175 3177 3179 3181
LISTING 363-Set-Upd 3208 PROCEDURE 3031 3103 3204
LISTING 364-Set-Ref 3218 PROCEDURE 3064 3199
LISTING 400-Produce-Xref-Listing 3227 PROCEDURE 2402
LISTING 410-Generate-Report-Line 3295 PROCEDURE 3241 3253 3265 3281 3291
LISTING 500-Produce-Source-Listing 3319 PROCEDURE 2396
LISTING 510-Control-Record 3339 PROCEDURE 3329
LISTING 520-Expanded-Src-Record 3356 PROCEDURE 3331
LISTING 530-Generate-Source-Line 3429 PROCEDURE 3375 3379 3383 3386 3390 3407 3411 3415
 3418 3423
LISTING F-ES-1-7-TXT 1397 FILE 2547 3327
LISTING F-ES-1-CHR 1394 FILE 2548 3328
LISTING F-ES-2-256-TXT-256 1395 FILE 2691 3340
LISTING F-ES-8-256-TXT 1398 FILE
LISTING F-Expanded-Src-FILE 1392 FILE 1383 2480 2527 2537 3321 3324 3336 3349
LISTING F-Expanded-Src-REC 1393 FILE 2481* 2535 2559 2561 2591 2595 2604 2608
 2617 2621 2629 2647 2732* 3393 3395 3419
 3421
LISTING F-Expanded-Src2-REC 1396 FILE

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-105

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 90
=============== ================================ ====== =============== ===
LISTING F-Listing-FILE 1400 FILE 1385 2395 2403
LISTING F-Listing-REC 1401 FILE 3297* 3298 3299* 3300 3301 3308 3309 3310
 3313 3431 3432 3433 3440 3441 3442 3445
LISTING F-Original-Src-FILE 1403 FILE 1387 3320 3335 3359
LISTING F-Original-Src-REC 1404 FILE
LISTING F-OS-1-128-TXT 1405 FILE 3363
LISTING F-OS-129-256-TXT 1410 FILE 3387 3389
LISTING F-OS-7-CHR 1407 FILE 3368
LISTING F-OS-8-72-TXT 1408 FILE 3364 3397
LISTING F-Sort-Work-FILE 1412 FILE 1389 2397 3234
LISTING F-Sort-Work-REC 1413 FILE 2502* 2504 2539* 2541 3032 3035* 3038 3072*
 3075 3080* 3083 3104 3106* 3109 3188* 3195
 3200 3205 3209* 3219*
LISTING F-SW-Def-Line-NUM 1418 FILE 3193* 3250 3258 3262 3274 3275
LISTING F-SW-Prog-ID-TXT 1414 FILE 2398 3189* 3210* 3220* 3237 3243 3246 3255
 3267 3271
LISTING F-SW-Ref-Flag-CHR 1421 FILE 3037* 3074* 3082* 3108* 3215* 3286
LISTING F-SW-Ref-Line-NUM 1420 FILE 2400 3194* 3214* 3224* 3284
LISTING F-SW-Reference-TXT 1419 FILE 3278
LISTING F-SW-Section-TXT 1417 FILE 3192* 3213* 3223* 3257 3273
LISTING F-SW-Token-TXT 1416 FILE 3191* 3212* 3222* 3272
LISTING F-SW-Token-Uc-TXT 1415 FILE 2399 3190* 3211* 3221* 3238 3247 3249 3261
LISTING L-Listing-Fn-TXT 2384 LINKAGE 1385 2390
LISTING L-OS-Type-CD 2388 LINKAGE 2392 2414 2420
LISTING L-Src-Fn-TXT 2386 LINKAGE 1387 2391 2424 2424* 2425 2426 2430 2433
 2439 2443 2445 2450
LISTING LENGTH PROCEDURE 2425 2443 2713
LISTING LOWER-CASE PROCEDURE 3364 3397
LISTING NUMVAL PROCEDURE 2465 2700
LISTING RETURN-CODE PROCEDURE 2461
LISTING TRIM PROCEDURE 2424 2443 2455 2701 2702 2713 3345 3346
 3364 3397
LISTING UPPER-CASE PROCEDURE 2430 2433 2492 2638 2661 2701 3345
LISTING WS-Argument-Is-Updatable-BOOL 2305 WORKING-STORAGE 2914* 2919* 2921* 2926* 3011
LISTING WS-Argument-Type-CD 2304 WORKING-STORAGE
LISTING WS-CD-In-DATA-DIV-BOOL 1438 WORKING-STORAGE 2512
LISTING WS-CD-In-ENV-DIV-BOOL 1437 WORKING-STORAGE 2510
LISTING WS-CD-In-IDENT-DIV-BOOL 1436 WORKING-STORAGE 2508
LISTING WS-CD-In-PROC-DIV-BOOL 1439 WORKING-STORAGE 2514
LISTING WS-CPI-13-15-TXT 1445 WORKING-STORAGE 2799*
LISTING WS-CPI-16-CHR 1446 WORKING-STORAGE 2798
LISTING WS-CS-1-CHR 1449 WORKING-STORAGE 2725*
LISTING WS-CS-11-14-TXT 1452 WORKING-STORAGE 2727 2728*
LISTING WS-CS-15-CHR 1453 WORKING-STORAGE 2730*
LISTING WS-CS-2-14-TXT 1450 WORKING-STORAGE 2726*
LISTING WS-Curr-Char-Is-Punct-BOOL 1427 WORKING-STORAGE 2570 2578 2583
LISTING WS-Curr-Char-Is-Quote-BOOL 1431 WORKING-STORAGE 2589
LISTING WS-Curr-Char-Is-X-BOOL 1432 WORKING-STORAGE 2602
LISTING WS-Curr-Char-Is-Z-BOOL 1433 WORKING-STORAGE 2615
LISTING WS-Curr-CHR 1426 WORKING-STORAGE 2560* 2563 2565 2571 2579 2585 2592
LISTING WS-Curr-Division-TXT 1435 WORKING-STORAGE 2485* 2521 2572 2580 2680 2792* 2815* 2842*
 2893* 2898*
LISTING WS-Curr-Line-NUM 1441 WORKING-STORAGE 2484* 2544* 2703* 2739* 3193 3214 3224 3358*
LISTING WS-Curr-Prog-ID-TXT 1443 WORKING-STORAGE 2474* 2797* 3189 3210 3220

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-106

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 91
=============== ================================ ====== =============== ===
LISTING WS-Curr-Section-TXT 1448 WORKING-STORAGE 2706* 2711 2820* 2847* 2888 2889* 3192 3213
 3223
LISTING WS-Curr-Verb-TXT 1455 WORKING-STORAGE 2475* 2499* 2523* 2907 2916 2931
LISTING WS-Delim-TXT 1457 WORKING-STORAGE 2632* 2634 2652* 2654 2657
LISTING WS-Dummy-TXT 1459 WORKING-STORAGE 2453* 2695* 2724* 2753* 2758* 2759 3344*
LISTING WS-Expanded-Src-Fn-TXT 1461 WORKING-STORAGE 1383 2458* 2459*
LISTING WS-Filename-TXT 1463 WORKING-STORAGE 2452* 2455 2723* 2726
LISTING WS-GI-Prog-ID-TXT 1466 WORKING-STORAGE 3237 3243 3246*
LISTING WS-GI-Token-TXT 1467 WORKING-STORAGE 3238 3247* 3249 3261
LISTING WS-Group-Indicators-TXT 1465 WORKING-STORAGE 3229*
LISTING WS-Held-Reference-TXT 1469 WORKING-STORAGE 2476* 2501 2502 2503* 2538 2539 2540* 3032*
 3034 3035 3036* 3065* 3071 3072 3073* 3079
 3080 3081* 3104* 3106 3107*
LISTING WS-I-SUB 1471 WORKING-STORAGE 2425* 2426 2427 2429 2432* 2433 2443* 2445
 2446 2447 2450 2700* 2703 2714* 2716 2717
 2718 2721 3230* 3254* 3266* 3279* 3280 3282*
 3285 3287 3315*
LISTING WS-J-SUB 1473 WORKING-STORAGE 2444* 2448* 2450 2715* 2719* 2721
LISTING WS-Lines-Left-NUM 1475 WORKING-STORAGE 3231* 3244* 3296 3311* 3316 3369* 3371* 3403*
 3430 3443* 3447
LISTING WS-Lines-Per-Page-Env-TXT 1479 WORKING-STORAGE 2436* 2464 2465
LISTING WS-Lines-Per-Page-NUM 1477 WORKING-STORAGE 2466* 2469* 3311 3443
LISTING WS-Lines-Per-Rec-CONST 1424 WORKING-STORAGE 2352 3280
LISTING WS-Main-Module-Name-TXT 1481 WORKING-STORAGE 2430* 2434* 2702 3346
LISTING WS-Next-Char-Is-Quote-BOOL 1484 WORKING-STORAGE 2602 2615
LISTING WS-Next-CHR 1483 WORKING-STORAGE 2562* 2605 2618
LISTING WS-OS-Type-FILLER-TXT 1486 WORKING-STORAGE 1492
LISTING WS-OS-Type-TXT 1493 WORKING-STORAGE 2414 2420
LISTING WS-OS-Types-TXT 1492 WORKING-STORAGE
LISTING WS-Page-No-TXT 1498 WORKING-STORAGE 3306* 3307 3438* 3439
LISTING WS-Page-NUM 1496 WORKING-STORAGE 2411* 3302* 3304 3434* 3436
LISTING WS-PN-Literal-TXT 1499 WORKING-STORAGE 3303* 3435*
LISTING WS-PN-Page-NUM 1500 WORKING-STORAGE 3304* 3305* 3436* 3437*
LISTING WS-Program-Path-TXT 1502 WORKING-STORAGE 2439* 2440
LISTING WS-Reserved-Word-Table-TXT 2261 WORKING-STORAGE
LISTING WS-Reserved-Word-TXT 2262 WORKING-STORAGE 2667 2801 2838 2899
LISTING WS-Reserved-Words-TXT 1504 WORKING-STORAGE 2261
LISTING WS-RS-Duplicate-CHR 2270 WORKING-STORAGE 3232* 3239* 3252* 3263 3264*
LISTING WS-RS-In-Copybook-BOOL 2273 WORKING-STORAGE 2709* 3352*
LISTING WS-RS-In-Main-Module-BOOL 2272 WORKING-STORAGE 2704* 2738 3347* 3357
LISTING WS-RS-In-Which-Pgm-CHR 2271 WORKING-STORAGE
LISTING WS-RS-Last-Token-Ended-Sent-CHR 2274 WORKING-STORAGE 2533* 2679
LISTING WS-RS-Processing-PICTURE-CHR 2275 WORKING-STORAGE 2628 2642* 2852*
LISTING WS-RS-Token-Ended-Sentence-CHR 2276 WORKING-STORAGE 2520 2532 2534* 2567* 2596* 2609* 2622* 2635*
 2655*
LISTING WS-RS-Verb-Has-Been-Found-CHR 2277 WORKING-STORAGE 2486* 2671* 2789*
LISTING WS-Runtime-Switches 2269 WORKING-STORAGE
LISTING WS-RW-IDX 2265 WORKING-STORAGE 2668 2669 2802 2803 2839 2840 2900 2901
LISTING WS-RW-Type-CD 2266 WORKING-STORAGE 2669 2803* 2840* 2901*
LISTING WS-RW-Word-TXT 2267 WORKING-STORAGE 2264 2668 2802 2839 2900
LISTING WS-Saved-Section-TXT 2279 WORKING-STORAGE 2705 2706 2710 2711*
LISTING WS-SDL-Line-NUM 2282 WORKING-STORAGE 3362*
LISTING WS-SDL-Statement-TXT 2284 WORKING-STORAGE 3363* 3389* 3396* 3422*
LISTING WS-SH1-DT 2288 WORKING-STORAGE 2473*

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-107

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 92
=============== ================================ ====== =============== ===
LISTING WS-SH1-Title-TXT 2287 WORKING-STORAGE 2417*
LISTING WS-SH3-Page-No-TXT 2294 WORKING-STORAGE 3439*
LISTING WS-Src-Detail-Line-TXT 2281 WORKING-STORAGE 3361* 3374* 3378* 3382* 3388* 3394* 3406* 3410*
 3414* 3420* 3445 3446*
LISTING WS-Src-Header-1-TXT 2286 WORKING-STORAGE 3433
LISTING WS-Src-Header-2-TXT 2290 WORKING-STORAGE 2440* 2441* 2442 3440
LISTING WS-Src-Header-3-TXT 2292 WORKING-STORAGE 3441
LISTING WS-Src-Header-4-TXT 2296 WORKING-STORAGE 3442
LISTING WS-Src-Line-NUM 2300 WORKING-STORAGE 3322* 3348 3360* 3362
LISTING WS-Src-SUB 2302 WORKING-STORAGE 2482* 2535 2536 2555* 2559 2561 2564* 2573*
 2584* 2590* 2594* 2595 2597* 2603* 2607* 2608
 2610* 2616* 2620* 2621 2623* 2633* 2636* 2653*
 2658 2733* 2737*
LISTING WS-Tally-QTY 2307 WORKING-STORAGE 2768* 2770* 2771 2775* 2776
LISTING WS-Temp-10-Chars-TXT 2309 WORKING-STORAGE 2693* 2697 2698* 2700 3342*
LISTING WS-Temp-256-Chars-TXT 2319 WORKING-STORAGE 2460* 2694* 2701 2713 2716 2721 3343* 3345
LISTING WS-Temp-32-Chars-1-TXT 2311 WORKING-STORAGE 2744* 2747 2754
LISTING WS-Temp-32-Chars-2-TXT 2313 WORKING-STORAGE 2751* 2756* 2762 2763* 2779
LISTING WS-Temp-32-Chars-3-TXT 2315 WORKING-STORAGE 2752* 2757* 2765 2766* 2779
LISTING WS-Temp-65-Chars-TXT 2317 WORKING-STORAGE 3365* 3370 3373 3377 3381 3398* 3402 3405
 3409 3413
LISTING WS-Today-DT 2321 WORKING-STORAGE 2471* 2472
LISTING WS-Token-Curr-TXT 2323 WORKING-STORAGE 2492 2496* 2565* 2574* 2585* 2593* 2606* 2619*
 2631* 2638 2651* 2661 2663* 2681* 2744 2791
 2797 2814 2819 2837 2846 2850 2897 2913
 2918 3191 3212 3222
LISTING WS-Token-Curr-Uc-TXT 2325 WORKING-STORAGE 2493* 2496 2499 2518 2891 3190 3211 3221
LISTING WS-Token-Prev-TXT 2327 WORKING-STORAGE 2500* 2518* 2522* 2581* 2792 2795 2796* 2815
 2820 2824 2842 2847 2856 2857* 2861 2864*
 2867* 2870* 2873* 2876* 2879* 2892 2898 2906
 2910* 2972 2975* 2982 2993 2996* 3005 3020
 3029 3053 3062 3066* 3069* 3077* 3085* 3092
 3101 3117 3120* 3123* 3130 3139 3150 3161
 3164* 3171
LISTING WS-Token-Search-TXT 2329 WORKING-STORAGE 2661* 2662 2668
LISTING WS-Token-Type-CD 2331 WORKING-STORAGE 2566* 2575* 2586* 2639* 2643* 2664* 2669* 2682*
LISTING WS-TT-Token-Is-Argtype-BOOL 2332 WORKING-STORAGE 2786 2810 2833 2917
LISTING WS-TT-Token-Is-EOF-BOOL 2333 WORKING-STORAGE 2489 2543*
LISTING WS-TT-Token-Is-Identifier-BOOL 2334 WORKING-STORAGE 2676* 2823 2860 2905 2928
LISTING WS-TT-Token-Is-Keyword-BOOL 2335 WORKING-STORAGE 2494 2517 2790 2813 2818 2836 2845 2851
 2896
LISTING WS-TT-Token-Is-Lit-Alpha-BOOL 2336 WORKING-STORAGE 2599* 2625*
LISTING WS-TT-Token-Is-Lit-Number-BOOL 2337 WORKING-STORAGE 2612* 2678 2748* 2780*
LISTING WS-TT-Token-Is-Reserved-Wd-BOOL 2339 WORKING-STORAGE 2495 2787* 2811* 2834* 2855
LISTING WS-TT-Token-Is-Verb-BOOL 2338 WORKING-STORAGE 2498 2670
LISTING WS-Usernames-QTY 2341 WORKING-STORAGE 2483*
LISTING WS-XDL-Def-Line-NUM 2348 WORKING-STORAGE 3258* 3275*
LISTING WS-XDL-Prog-ID-TXT 2344 WORKING-STORAGE 3255* 3267* 3271*
LISTING WS-XDL-Ref-Flag-CHR 2354 WORKING-STORAGE 3287*
LISTING WS-XDL-Ref-Line-NUM 2353 WORKING-STORAGE 3285*
LISTING WS-XDL-Reference-TXT 2352 WORKING-STORAGE
LISTING WS-XDL-Section-TXT 2350 WORKING-STORAGE 3257* 3273*
LISTING WS-XDL-Token-TXT 2346 WORKING-STORAGE 3256* 3268* 3272*
LISTING WS-XH1-DT 2359 WORKING-STORAGE 2472*

GNU COBOL 2.0 Programmers Guide GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End Sample Programs

11FEB2012 Version Page 10-108

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/GCic.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 93
=============== ================================ ====== =============== ===
LISTING WS-XH1-Title-TXT 2358 WORKING-STORAGE 2423*
LISTING WS-XH3-Page-No-TXT 2370 WORKING-STORAGE 3307*
LISTING WS-Xref-Detail-Line-TXT 2343 WORKING-STORAGE 3228* 3240 3251 3270 3290 3313 3314*
LISTING WS-Xref-Header-1-TXT 2357 WORKING-STORAGE 3301
LISTING WS-Xref-Header-2-TXT 2361 WORKING-STORAGE 2442* 3308
LISTING WS-Xref-Header-3-TXT 2363 WORKING-STORAGE 3309
LISTING WS-Xref-Header-4-TXT 2372 WORKING-STORAGE 3310

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-109

10.5. STREAMIO – A Utility Subroutine to Simplify Stream I/O

STREAMIO is a utility I created to assist with handling stream I/O functions. I’ve used it to construct a number of useful little command-line utilities.

Usage of this subroutine is completely documented in the program comments. The program COPYs a copybook named STREAMIOcb, the format of which is described in the program
comments.

Both STREAMIO.cbl and STREAMIOcb.cpy are included in the “samples” directory of any pre-built distributions of GNU COBOL that I have created.

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-110

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 1
====== ==
 1 >>SOURCE FORMAT IS FIXED
 2 IDENTIFICATION DIVISION.
 3 PROGRAM-ID. STREAMIO.
 4 *>**
 5 *> Author: Gary L. Cutler **
 6 *> CutlerGL@gmail.com **
 7 *> **
 8 *> This routine centralizes all bytestream file I/O functions **
 9 *> into one routine. The manner in which this routine is **
 10 *> CALLed is as follows: **
 11 *> **
 12 *> CALL "STREAMIO" USING control-block [, arg2] **
 13 *> **
 14 *> where 'control-block' is defined by the "STREAMIOcb.cpy" **
 15 *> copybook and 'arg2' will vary, depending upon the function **
 16 *> specified in the control block. **
 17 *> **
 18 *> The STREAMIO routine has an advantage over the various **
 19 *> "CBL_xxxxxx_FILE" routines in that: **
 20 *> **
 21 *> 1. It automates the establishment and on-going adjustment of **
 22 *> the file-offset value in such a way as to simplify the **
 23 *> sequential processing of a bytestream file (you may still **
 24 *> specify a file-offset manually on each read or write, if **
 25 *> you wish) **
 26 *> **
 27 *> 2. It auto-detects the size of the I/O buffer you supply to **
 28 *> STREAMIO, using that as the byte-count of all read and **
 29 *> write operations. **
 30 *> **
 31 *> 3. Not only does it support the raw input and output of data **
 32 *> that the CBL_READ_FILE and CBL_WRITE_FILE routines do, **
 33 *> but on input it is also capable of delivering just a **
 34 *> single newline-delimited or carriage-return/newline de- **
 35 *> limited record to the caller. **
 36 *> **
 37 *> 4. On output, STREAMIO can optionally append either a new- **
 38 *> line or carriage-return/newline sequence (your choice) to **
 39 *> the end of every record it writes. **
 40 *> **
 41 *> 5. STREAMIO can automatically generate filenames for output **
 42 *> files if you wish, simplifying the process of creating **
 43 *> scratch or work files. **
 44 *> **
 45 *> 6. The STREAMIO routine also allows you to (optionally) re- **
 46 *> gister a general error-handling routine to be given con- **
 47 *> trol should a fatal error be detected with STREAMIO. **
 48 *> **
 49 *> This routine can be "turned on" and "turned off" at will. **
 50 *> **
 51 *> The control block format is as follows. This structure must **
 52 *> be defined under an 01-level data item of your creation and **
 53 *> should be INITIALIZEd before any items within it are used. **
 54 *> **

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-111

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 2
====== ==
 55 *> 05 SCB-Handle-NUM PIC X(4) COMP-X. **
 56 *> 05 SCB-Mode-CD PIC X(1). **
 57 *> 88 SCB-Mode-Input-BOOL VALUE 'I', 'i'. **
 58 *> 88 SCB-Mode-Output-BOOL VALUE 'O', 'o'. **
 59 *> 88 SCB-Mode-Both-BOOL VALUE 'B', 'b'. **
 60 *> 05 SCB-Function-CD PIC X(2). **
 61 *> 88 SCB-Func-CLOSE-BOOL VALUE 'C ', 'c '. **
 62 *> 88 SCB-Func-DELETE-BOOL VALUE 'D ', 'd '. **
 63 *> 88 SCB-Func-OPEN-BOOL VALUE 'O ', 'o '. **
 64 *> 88 SCB-Func-READ-BOOL VALUE 'R ', 'r '. **
 65 *> 88 SCB-Func-READ-Delim-BOOL VALUE 'RD', 'rd', **
 66 *> 'rD', 'Rd'. **
 67 *> 88 SCB-Func-WRITE-BOOL VALUE 'W ', 'w '. **
 68 *> 88 SCB-Func-WRITE-Delim-BOOL VALUE 'WD', 'wd', **
 69 *> 'wD', 'Wd'. **
 70 *> 05 SCB-Delimiter-Mode-CD PIC X(1). **
 71 *> 88 SCB-Delim-Unix-BOOL VALUE 'U', 'u'. **
 72 *> 88 SCB-Delim-Windows-BOOL VALUE 'W', 'w'. **
 73 *> 05 SCB-Offset-NUM PIC X(8) COMP-X. **
 74 *> 05 SCB-Error-Routine-PTR USAGE PROGRAM-POINTER. **
 75 *> 05 SCB-Error-Routine-NUM REDEFINES SCB-Error-Routine-PTR **
 76 *> USAGE BINARY-LONG. **
 77 *> 05 SCB-Return-CD USAGE BINARY-LONG. **
 78 *> 05 SCB-Filename-TXT PIC X(256). **
 79 *> **
 80 *> Such a structure is defined for your use using the copybook **
 81 *> "STREAMIOcb.cpy" (you may also define your own, provided it **
 82 *> conforms to the above layout). **
 83 *>--**
 84 *> SCB-Handle-NUM **
 85 *>--**
 86 *> **
 87 *> Serves as a file handle to the file once it has been opened **
 88 *> (via the "SCB-Func-OPEN-BOOL" function). **
 89 *> **
 90 *>--**
 91 *> SCB-Mode-CD **
 92 *>--**
 93 *> **
 94 *> Prior to calling "STREAMIO" for the first time for a file, **
 95 *> the appropriate subordinate level-88 must be set to TRUE to **
 96 *> select an I/O mode. You may also simply move one of the **
 97 *> string values listed on the level-88 items to "SCB-Mode-CD". **
 98 *> **
 99 *>--**
 100 *> SCB-Function-CD **
 101 *>--**
 102 *> **
 103 *> The appropriate subordinate level-88 must be set to TRUE to **
 104 *> select a function you'd like to execute against a file. You **
 105 *> may also simply move one of the string values listed on the **
 106 *> level-88 items to "SCB-Function-CD". **
 107 *> **
 108 *> Available functions are as follows: **

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-112

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 3
====== ==
 109 *> **
 110 *> SCB-Func-OPEN-BOOL **
 111 *> **
 112 *> This must be the function specified the first time you **
 113 *> call STREAMIO for any given file. It opens the file & **
 114 *> makes it available for use according to the **
 115 *> "SCB-Mode-CD" specification. **
 116 *> **
 117 *> The filename being opened must be specified in the **
 118 *> "SCB-Filename-TXT" field. **
 119 *> **
 120 *> The SCB-Offset-NUM field will be initialized to ZERO. **
 121 *> **
 122 *> If "arg2" is specified in conjunction with this funct- **
 123 *> ion, it will be ignored. **
 124 *> **
 125 *> SCB-Func-CLOSE-BOOL **
 126 *> **
 127 *> This function should be the one specified the LAST time **
 128 *> you call STREAMIO against a specific file. After this **
 129 *> function has been executed, you'll have to re-open the **
 130 *> file if you wish to use it with STREAMIO again. **
 131 *> **
 132 *> The SCB-Handle-NUM item will be reset to ZERO. **
 133 *> **
 134 *> If "arg2" is specified in conjunction with this funct- **
 135 *> ion, it will be ignored. **
 136 *> **
 137 *> SCB-Func-DELETE-BOOL **
 138 *> **
 139 *> This function will delete the file specified in the **
 140 *> control block (see SCB-Filename-TXT). **
 141 *> **
 142 *> This function should not be performed against a file **
 143 *> that is open. **
 144 *> **
 145 *> If "arg2" is specified in conjunction with this funct- **
 146 *> ion, it will be ignored. **
 147 *> **
 148 *> SCB-Func-READ-BOOL **
 149 *> **
 150 *> This function invokes a standard CBL_READ_FILE against **
 151 *> the file specified in the control block (see **
 152 *> SCB-Filename-TXT). **
 153 *> **
 154 *> The buffer into which you wish to read data must be **
 155 *> supplied as "arg2". The size of that buffer, in bytes, **
 156 *> will define the "byte-count" value supplied to the **
 157 *> CBL_READ_FILE subroutine. The buffer data item will be **
 158 *> set to SPACES before the read takes place. **
 159 *> **
 160 *> If the file-offset value (SCB-Offset-NUM) is greater **
 161 *> than the size of the file, a "no more data" return code **
 162 *> (01) will be passed back in SCB-Return-CD and the **

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-113

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 4
====== ==
 163 *> buffer will have been set to SPACES. **
 164 *> **
 165 *> At the conclusion of a successful SCB-Func-READ-BOOL, **
 166 *> the value of SCB-Offset-NUM will have been automati- **
 167 *> cally incremented by the byte-count size of "arg2". **
 168 *> **
 169 *> SCB-Func-WRITE-BOOL **
 170 *> **
 171 *> This function invokes a standard CBL_WRITE_FILE against **
 172 *> the file specified in the control block (see **
 173 *> SCB-Filename-TXT). **
 174 *> **
 175 *> The buffer from which data will be written to the file **
 176 *> must be supplied as "arg2". The size of that buffer, **
 177 *> in bytes, will define the "byte-count" value supplied **
 178 *> CBL_WRITE_FILE subroutine. The buffer data will be **
 179 *> written to the file-offset position defined by the **
 180 *> SCB-Offset-NUM value. You may specify "arg2" either **
 181 *> as an actual alphanumeric data item or as an alpha- **
 182 *> numeric literal. **
 183 *> **
 184 *> If the file-offset value (SCB-Offset-NUM) is greater **
 185 *> than the size of the file, a "no more data" return code **
 186 *> will be passed back in SCB-Return-CD and the buffer **
 187 *> will have been set to SPACES. **
 188 *> **
 189 *> At the conclusion of a successful SCB-Func-WRITE-BOOL **
 190 *> operation, the value of SCB-Offset-NUM will have been **
 191 *> automatically incremented by the byte-count size of **
 192 *> "arg2". **
 193 *> **
 194 *> SCB-Func-READ-Delim-BOOL **
 195 *> **
 196 *> SCB-Func-READ-Delim-BOOL bahaves like the SCB-FUNC- **
 197 *> READ function, with the following behavioral dif- **
 198 *> ferences: **
 199 *> **
 200 *> 1. When data is read from the file, only that data read **
 201 *> up to BUT NOT INCLUDING an end-of-line delimiter **
 202 *> sequence (either a LF or CRLF) will be retained in **
 203 *> the buffer - the remainder of the buffer from the **
 204 *> end-of-line sequence onward will be reset to SPACES. **
 205 *> The file-offset value (SCB-Offset-NUM) will be in- **
 206 *> cremented ONLY by the amount of data transferred up **
 207 *> to AND INCLUDING the end-of-line sequence. **
 208 *> **
 209 *> 2. When data is read from the file and an end-of-line **
 210 *> delimiter sequence (either a LF or a CRLF) cannot be **
 211 *> found within the buffer, the assumption is made that **
 212 *> the record is too long to fit within the buffer. In **
 213 *> these instances, an SCB-Return-CD value of 02 will **
 214 *> be returned and the SCB-Offset-NUM value will be **
 215 *> incremented past the next end-of-line sequence in **
 216 *> the file (this will involve at least one additional **

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-114

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 5
====== ==
 217 *> call to CBL_READ_FILE to locate that eol sequence, **
 218 *> but any additional such reads will be done internal- **
 219 *> ly to STREAMIO and will be entirely transparent to **
 220 *> the caller of STREAMIO. **
 221 *> **
 222 *> DO NOT USE the Streamio-READ-Delim function if the **
 223 *> possibility exists that linefeed (X"0A") or carriage- **
 224 *> return (X"0D") characters could exist as actual data **
 225 *> characters in the file. **
 226 *> **
 227 *> SCB-Func-WRITE-Delim-BOOL **
 228 *> **
 229 *> SCB-Func-WRITE-Delim-BOOL acts like the Streamio- **
 230 *> FUNC-WRITE function, with the following difference: **
 231 *> **
 232 *> After the specified data is written to the file, an **
 233 *> end-of-line sequence will also be written to the file. **
 234 *> The file-offset value (SCB-Value) will be incremented **
 235 *> by the byte-count size of the data PLUS the size of the **
 236 *> end-of-line sequence. One of two possible end-of-line **
 237 *> sequences must be specified using the value of SCB- **
 238 *> Delimter-Mode. **
 239 *> **
 240 *>--**
 241 *> SCB-Delimiter-Mode-CD **
 242 *>--**
 243 *> **
 244 *> This data item is needed only when issuing the Streamio- **
 245 *> FUNC-WRITE-Delim function. In those circumstances, this **
 246 *> item defines what end-of-line delimiter sequence is to be **
 247 *> written: **
 248 *> **
 249 *> If SCB-Delim-Unix-BOOL is true, a linefeed character will **
 250 *> be written. **
 251 *> **
 252 *> If SCB-Delim-Windows-BOOL is true, a carriage-return and **
 253 *> linefeed sequence will be written. **
 254 *> **
 255 *>--**
 256 *> SCB-Offset-NUM **
 257 *>--**
 258 *> **
 259 *> This data item specifies the next relative byte number with- **
 260 *> in the file where the next read or write will start. **
 261 *> **
 262 *> SCB-Offset-NUM is automatically set to 0 (the first byte) **
 263 *> when the file is opened, and is automatically incremented as **
 264 *> the file is read or written via STREAMIO. **
 265 *> **
 266 *> You may also manually set this value as desired before any **
 267 *> call to STREAMIO. **
 268 *> **
 269 *>--**
 270 *> SCB-Error-Routine-PTR **

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-115

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 6
====== ==
 271 *>--**
 272 *> **
 273 *> To specify a general error-handling routine for handling **
 274 *> STREAMIO failures, Create the routine and define an entry- **
 275 *> name for it via the ENTRY statement. Then use the following **
 276 *> to set that routine up as the error handler: **
 277 *> **
 278 *> SET SCB-Error-Routine-PTR TO ENTRY "entry-name" **
 279 *> **
 280 *> To "turn off" the error-routine: **
 281 *> **
 282 *> SET SCB-Error-Routine-PTR TO NULL **
 283 *> **
 284 *> If a fatal error occurs (any error not marked with a ">" in **
 285 *> the SCB-Return-CD discussion), the error routine you spe- **
 286 *> cified (if any) will be set up as an exit routine via the **
 287 *> CBL_EXIT_PROC subroutine; the STREAMIO routine will then is- **
 288 *> sue a STOP RUN to intentionally trigger your error routine. **
 289 *> You will not be able to recover your program once your error **
 290 *> routine triggers. If you wish to be able to recover from **
 291 *> fatal STREAMIO errors, you should NOT use the SCB-Error- **
 292 *> Routine feature but instead you should explicitly test the **
 293 *> SCB-Return-CD value after every call to STREAMIO. **
 294 *> **
 295 *> A default error routine is defined by the "STREAMIOError.cpy"**
 296 *> copybook. **
 297 *> **
 298 *>--**
 299 *> SCB-Return-CD **
 300 *>--**
 301 *> **
 302 *> The following are the possible SCB-Return-CD values. The **
 303 *> ones marked with a ">" will NOT trigger an error-routine, if **
 304 *> one is currently registered via SCB-Error-Routine-PTR. **
 305 *> **
 306 *> 12 I/O error writing to file **
 307 *> 11 File does not exist **
 308 *> 10 File already OPEN or already CLOSEd **
 309 *> > 02 READ-Delim was truncated **
 310 *> > 01 No more data is available from the current **
 311 *> SCB-Offset-NUM **
 312 *> > 00 OK - the operation was successful **
 313 *> -1 Invalid SCB-Function-CD **
 314 *> -2 Invalid SCB-Mode-CD **
 315 *> -3 CBL_xxxxx_FILE routine rejected operation **
 316 *> -4 Invalid delimiter mode specified (Not U/W) **
 317 *> **
 318 *>--**
 319 *> SCB-Filename-TXT **
 320 *>--**
 321 *> **
 322 *> This is the name of the file you wish to access. **
 323 *> **
 324 *> If you are planning on reading the file, the file MUST exist **

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-116

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 7
====== ==
 325 *> at the time the SCB-Func-OPEN-BOOL is executed. **
 326 *> **
 327 *> If you are planning on writing to the file, the file need **
 328 *> exist when the SCB-Func-OPEN-BOOL is issued. **
 329 *> **
 330 *> In general, the contents of SCB-Filename-TXT should re- **
 331 *> flect the complete path to the file as well as the name of **
 332 *> the file itself, unless the file is contained in whatever **
 333 *> directory is current at the time the SCB-Func-OPEN-BOOL is **
 334 *> executed. **
 335 *> **
 336 *> The following special values may be used for **
 337 *> SCB-Filename-TXT: **
 338 *> **
 339 *> SPACES If the filename is SPACES, a filename will be created **
 340 *> automatically for you in whatever directory is de- **
 341 *> fined by the TEMP environment variable. If there IS **
 342 *> no TEMP variable defined, the "/tmp" folder will be **
 343 *> assumed. The filename will be STREAMIO-nnnnnnnn.dat **
 344 *> where "nnnnnnnn" is a random number. **
 345 *> **
 346 *> . If you specify only a dot (period) as the filename, **
 347 *> the behavior will be the same as with a value of **
 348 *> SPACES except there will be no ".dat" at the end of **
 349 *> the generated filename. **
 350 *> **
 351 *> .ext If you specify a filename extension prefixed with a **
 352 *> dot (period), the behavior will be the same as if a **
 353 *> value of SPACES were specified, except that the given **
 354 *> extension will be used instead of ".dat". Note that **
 355 *> if you are using a Unix/Cygwin implementation of **
 356 *> OpenCOBOL and you'd like to specify a hidden file in **
 357 *> the current directory as the SCB-Filename-TXT, you **
 358 *> MUST code the filename as "./.xxxxx" to avoid having **
 359 *> it treated as this special name. **
 360 *> **
 361 *>**
 362 ENVIRONMENT DIVISION.
 363 CONFIGURATION SECTION.
 364 REPOSITORY.
 365 FUNCTION ALL INTRINSIC.
 366 DATA DIVISION.
 367 WORKING-STORAGE SECTION.
 368 01 WS-Access-Mode-CD PIC X(1) COMP-X.
 369 01 WS-Arg-Length-NUM PIC X(4) COMP-X.
 370 01 WS-Buffer-TXT PIC X(256).
 371 01 WS-Delim-Buffer-TXT PIC X(2).
 372 01 WS-Env-Temp-TXT PIC X(256).
 373 01 WS-Slash-CHR PIC X(1).
 374 01 WS-Tally-NUM USAGE BINARY-LONG.
 375 01 WS-8-Digit-NUM PIC 9(8).
 376 01 WS-256-Byte-TXT PIC X(256).
 377 LINKAGE SECTION.
 378 01 L-StreamIO-Control-Block-TXT.

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-117

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 8
====== ==
 379 COPY STREAMIOcb
 380 REPLACING LEADING ==SCB-== BY ==L-SCB-==.
 05 L-SCB-Handle-NUM PIC X(4) COMP-X.
 05 L-SCB-Mode-CD PIC X(1).
 88 L-SCB-MODE-Input-BOOL VALUE 'I' 'i'.
 88 L-SCB-MODE-Output-BOOL VALUE 'O' 'o'.
 88 L-SCB-MODE-Both-BOOL VALUE 'B' 'b'.
 05 L-SCB-Function-CD PIC X(2).
 88 L-SCB-Func-CLOSE-BOOL VALUE 'C ' 'c '.
 88 L-SCB-Func-DELETE-BOOL VALUE 'D ' 'd '.
 88 L-SCB-Func-OPEN-BOOL VALUE 'O ' 'o '.
 88 L-SCB-Func-READ-BOOL VALUE 'R ' 'r '.
 88 L-SCB-Func-READ-Delim-BOOL VALUE 'RD' 'rd'
 'rD' 'Rd'.
 88 L-SCB-Func-WRITE-BOOL VALUE 'W ' 'w '.
 88 L-SCB-Func-WRITE-Delim-BOOL VALUE 'WD' 'wd'
 'wD' 'Wd'.
 05 L-SCB-Delimiter-Mode-CD PIC X(1).
 88 L-SCB-DELIM-Unix-BOOL VALUE 'U' 'u'.
 88 L-SCB-DELIM-Windows-BOOL VALUE 'W' 'w'.
 05 L-SCB-Offset-NUM PIC X(8) COMP-X.
 05 L-SCB-Error-Routine-PTR USAGE PROGRAM-POINTER.
 05 L-SCB-Error-Routine-NUM REDEFINES L-SCB-Error-Routine-PTR
 USAGE BINARY-LONG.
 05 L-SCB-Return-CD USAGE BINARY-LONG.
 05 L-SCB-Filename-TXT PIC X(256).
 381 01 L-Arg2-TXT PIC X ANY LENGTH.
 382 PROCEDURE DIVISION USING L-StreamIO-Control-Block-TXT,
 383 L-Arg2-TXT.
 384 000-Main SECTION.
 385 MOVE 00 TO L-SCB-Return-CD
 386 EVALUATE TRUE
 387 WHEN L-SCB-Func-CLOSE-BOOL
 388 PERFORM 030-Validate-Handle-NonZero
 389 PERFORM 200-CLOSE
 390 WHEN L-SCB-Func-DELETE-BOOL
 391 CALL "CBL_DELETE_FILE" USING L-SCB-Filename-TXT
 392 WHEN L-SCB-Func-OPEN-BOOL
 393 PERFORM 020-Validate-Handle-Zero
 394 PERFORM 100-OPEN
 395 WHEN L-SCB-Func-READ-BOOL
 396 PERFORM 030-Validate-Handle-NonZero
 397 PERFORM 400-READ
 398 WHEN L-SCB-Func-READ-Delim-BOOL
 399 PERFORM 030-Validate-Handle-NonZero
 400 PERFORM 500-READ-Delim
 401 WHEN L-SCB-Func-WRITE-BOOL
 402 PERFORM 030-Validate-Handle-NonZero
 403 PERFORM 300-WRITE
 404 WHEN L-SCB-Func-WRITE-Delim-BOOL
 405 EVALUATE TRUE
 406 WHEN L-SCB-Delim-Unix-BOOL
 407 PERFORM 030-Validate-Handle-NonZero
 408 PERFORM 300-WRITE

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-118

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 9
====== ==
 409 MOVE 1 TO WS-Arg-Length-NUM
 410 MOVE X"0A" TO WS-Delim-Buffer-TXT
 411 WHEN L-SCB-Delim-Windows-BOOL
 412 PERFORM 030-Validate-Handle-NonZero
 413 PERFORM 300-WRITE
 414 MOVE 2 TO WS-Arg-Length-NUM
 415 MOVE X"0D0A" TO WS-Delim-Buffer-TXT
 416 WHEN OTHER
 417 MOVE -4 TO L-SCB-Return-CD
 418 PERFORM 099-ERROR-Return
 419 END-EVALUATE
 420 CALL "CBL_WRITE_FILE" USING L-SCB-Handle-NUM
 421 L-SCB-Offset-NUM
 422 WS-Arg-Length-NUM
 423 0
 424 WS-Delim-Buffer-TXT
 425 PERFORM 040-Check-WRITE-SCB-Return-CD
 426 ADD WS-Arg-Length-NUM TO L-SCB-Offset-NUM
 427 WHEN OTHER
 428 MOVE -1 TO L-SCB-Return-CD
 429 PERFORM 099-ERROR-Return
 430 END-EVALUATE
 431 GOBACK
 432 .
 433 020-Validate-Handle-Zero SECTION.
 434 IF L-SCB-Handle-NUM NOT = ZERO
 435 MOVE 10 TO L-SCB-Return-CD
 436 PERFORM 099-ERROR-Return
 437 END-IF
 438 .
 439 030-Validate-Handle-NonZero SECTION.
 440 IF L-SCB-Handle-NUM = ZERO
 441 MOVE 10 TO L-SCB-Return-CD
 442 PERFORM 099-ERROR-Return
 443 END-IF
 444 .
 445 040-Check-WRITE-SCB-Return-CD SECTION.
 446 IF RETURN-CODE < 0
 447 MOVE -3 TO L-SCB-Return-CD
 448 PERFORM 099-ERROR-Return
 449 END-IF
 450 IF RETURN-CODE = 30
 451 MOVE 12 TO L-SCB-Return-CD
 452 PERFORM 099-ERROR-Return
 453 END-IF
 454 MOVE 00 TO L-SCB-Return-CD
 455 .
 456 050-Check-READ-SCB-Return-CD SECTION.
 457 IF RETURN-CODE < 0
 458 MOVE -3 TO L-SCB-Return-CD
 459 PERFORM 099-ERROR-Return
 460 END-IF
 461 IF RETURN-CODE = 10
 462 MOVE 01 TO L-SCB-Return-CD

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-119

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 10
====== ==
 463 GOBACK
 464 END-IF
 465 MOVE 00 TO L-SCB-Return-CD
 466 .
 467 060-Identify-TEMP SECTION.
 468 ACCEPT WS-Env-Temp-TXT FROM ENVIRONMENT "TEMP"
 469 EVALUATE TRUE
 470 WHEN WS-Env-Temp-TXT (1:1) = "/"
 471 MOVE "/" TO WS-Slash-CHR
 472 WHEN WS-Env-Temp-TXT (2:1) = ":"
 473 MOVE "\" TO WS-Slash-CHR
 474 WHEN OTHER
 475 MOVE "/tmp" TO WS-Env-Temp-TXT
 476 MOVE "/" TO WS-Slash-CHR
 477 END-EVALUATE
 478 .
 479 099-ERROR-Return SECTION.
 480 IF L-SCB-Error-Routine-NUM NOT = 0
 481 CALL "CBL_EXIT_PROC" USING 0, L-SCB-Error-Routine-PTR
 482 STOP RUN
 483 END-IF
 484 GOBACK
 485 .
 486 100-OPEN SECTION.
 487 IF (L-SCB-Mode-Input-BOOL OR L-SCB-Mode-Both-BOOL)
 488 AND (L-SCB-Filename-TXT = SPACES OR LOW-VALUES)
 489 MOVE 11 TO L-SCB-Return-CD
 490 PERFORM 099-ERROR-Return
 491 END-IF
 492 EVALUATE TRUE
 493 WHEN L-SCB-Filename-TXT = SPACES OR LOW-VALUES
 494 PERFORM 060-Identify-TEMP
 495 MOVE SPACES TO L-SCB-Filename-TXT
 496 COMPUTE
 497 WS-8-Digit-NUM =
 498 RANDOM(SECONDS-PAST-MIDNIGHT) * 100000000
 499 END-COMPUTE
 500 STRING
 501 TRIM(WS-Env-Temp-TXT,TRAILING)
 502 WS-Slash-CHR
 503 "STREAMIO-"
 504 WS-8-Digit-NUM
 505 ".dat"
 506 DELIMITED BY SIZE
 507 INTO L-SCB-Filename-TXT
 508 WHEN L-SCB-Filename-TXT(1:1) = "."
 509 PERFORM 060-Identify-TEMP
 510 IF L-SCB-Filename-TXT(2:1) = SPACE
 511 MOVE SPACES TO WS-256-Byte-TXT
 512 ELSE
 513 MOVE L-SCB-Filename-TXT TO WS-256-Byte-TXT
 514 END-IF
 515 MOVE SPACES TO L-SCB-Filename-TXT
 516 COMPUTE WS-8-Digit-NUM =

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-120

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 11
====== ==
 517 RANDOM(SECONDS-PAST-MIDNIGHT) * 100000000
 518 STRING
 519 TRIM(WS-Env-Temp-TXT,TRAILING)
 520 WS-Slash-CHR
 521 "STREAMIO-"
 522 WS-8-Digit-NUM
 523 TRIM(WS-256-Byte-TXT,TRAILING)
 524 DELIMITED BY SIZE
 525 INTO L-SCB-Filename-TXT
 526 END-EVALUATE
 527 EVALUATE TRUE
 528 WHEN L-SCB-Mode-Input-BOOL
 529 MOVE 1 TO WS-Access-Mode-CD
 530 WHEN L-SCB-Mode-Output-BOOL
 531 MOVE 2 TO WS-Access-Mode-CD
 532 WHEN L-SCB-Mode-Both-BOOL
 533 MOVE 3 TO WS-Access-Mode-CD
 534 WHEN OTHER
 535 MOVE -2 TO L-SCB-Return-CD
 536 PERFORM 099-ERROR-Return
 537 END-EVALUATE
 538 CALL "CBL_OPEN_FILE" USING TRIM(L-SCB-Filename-TXT,TRAILING)
 539 WS-Access-Mode-CD
 540 0
 541 0
 542 L-SCB-Handle-NUM
 543 IF RETURN-CODE = 35
 544 MOVE 11 TO L-SCB-Return-CD
 545 PERFORM 099-ERROR-Return
 546 END-IF
 547 IF RETURN-CODE < 0
 548 MOVE -2 TO L-SCB-Return-CD
 549 PERFORM 099-ERROR-Return
 550 END-IF
 551 MOVE 00 TO L-SCB-Return-CD
 552 MOVE 0 TO L-SCB-Offset-NUM
 553 .
 554 200-CLOSE SECTION.
 555 CALL "CBL_CLOSE_FILE" USING L-SCB-Handle-NUM
 556 IF RETURN-CODE < 0
 557 MOVE -2 TO L-SCB-Return-CD
 558 PERFORM 099-ERROR-Return
 559 END-IF
 560 MOVE 00 TO L-SCB-Return-CD
 561 MOVE 0 TO L-SCB-Handle-NUM
 562 .
 563 300-WRITE SECTION.
 564 CALL "C$PARAMSIZE" USING 2
 565 MOVE RETURN-CODE TO WS-Arg-Length-NUM
 566 CALL "CBL_WRITE_FILE" USING L-SCB-Handle-NUM
 567 L-SCB-Offset-NUM
 568 WS-Arg-Length-NUM
 569 0
 570 L-Arg2-TXT

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-121

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 12
====== ==
 571 PERFORM 040-Check-WRITE-SCB-Return-CD
 572 ADD WS-Arg-Length-NUM TO L-SCB-Offset-NUM
 573 .
 574 400-READ SECTION.
 575 CALL "C$PARAMSIZE" USING 2
 576 MOVE RETURN-CODE TO WS-Arg-Length-NUM
 577 MOVE SPACES TO L-Arg2-TXT(1:WS-Arg-Length-NUM)
 578 CALL "CBL_READ_FILE" USING L-SCB-Handle-NUM
 579 L-SCB-Offset-NUM
 580 WS-Arg-Length-NUM
 581 0
 582 L-Arg2-TXT
 583 PERFORM 050-Check-READ-SCB-Return-CD
 584 ADD WS-Arg-Length-NUM TO L-SCB-Offset-NUM
 585 .
 586 500-READ-Delim SECTION.
 587 CALL "C$PARAMSIZE" USING 2
 588 MOVE RETURN-CODE TO WS-Arg-Length-NUM
 589 MOVE SPACES TO L-Arg2-TXT(1:WS-Arg-Length-NUM)
 590 CALL "CBL_READ_FILE" USING L-SCB-Handle-NUM
 591 L-SCB-Offset-NUM
 592 WS-Arg-Length-NUM
 593 0
 594 L-Arg2-TXT
 595 PERFORM 050-Check-READ-SCB-Return-CD
 596 MOVE 0 TO WS-Tally-NUM
 597 INSPECT L-Arg2-TXT(1:WS-Arg-Length-NUM)
 598 TALLYING WS-Tally-NUM FOR ALL X"0A"
 599 IF WS-Tally-NUM = 0 *> No LF found - return truncated data and position past next LF (if any)
 600 IF L-Arg2-TXT(WS-Arg-Length-NUM:1) = X"0D"
 601 MOVE SPACE TO L-Arg2-TXT(WS-Arg-Length-NUM:1)
 602 END-IF
 603 ADD WS-Arg-Length-NUM TO L-SCB-Offset-NUM
 604 MOVE 02 TO L-SCB-Return-CD
 605 MOVE 256 TO WS-Arg-Length-NUM
 606 PERFORM UNTIL 0 = 1
 607 MOVE SPACES TO WS-Buffer-TXT
 608 CALL "CBL_READ_FILE" USING L-SCB-Handle-NUM
 609 L-SCB-Offset-NUM
 610 WS-Arg-Length-NUM
 611 0
 612 WS-Buffer-TXT
 613 IF RETURN-CODE < 0
 614 MOVE -3 TO L-SCB-Return-CD
 615 PERFORM 099-ERROR-Return
 616 END-IF
 617 IF RETURN-CODE = 10
 618 GOBACK
 619 END-IF
 620 MOVE 0 TO WS-Tally-NUM
 621 INSPECT WS-Buffer-TXT
 622 TALLYING WS-Tally-NUM FOR ALL X"0A"
 623 IF WS-Tally-NUM = 0
 624 ADD 256 TO L-SCB-Offset-NUM

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-122

GNU COBOL V2.0 11FEB2012 Source Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
Line Statement Page: 13
====== ==
 625 ELSE
 626 MOVE 0 TO WS-Tally-NUM
 627 INSPECT WS-Buffer-TXT
 628 TALLYING WS-Tally-NUM
 629 FOR CHARACTERS BEFORE INITIAL X"0A"
 630 ADD WS-Tally-NUM, 1 TO L-SCB-Offset-NUM
 631 GOBACK
 632 END-IF
 633 END-PERFORM
 634 ELSE *> There is (at least) one LF in the buffer
 635 MOVE 0 TO WS-Tally-NUM
 636 INSPECT L-Arg2-TXT(1:WS-Arg-Length-NUM)
 637 TALLYING WS-Tally-NUM
 638 FOR CHARACTERS BEFORE INITIAL X"0A"
 639 ADD WS-Tally-NUM, 1 TO L-SCB-Offset-NUM
 640 IF WS-Tally-NUM > 1
 641 IF L-Arg2-TXT(WS-Tally-NUM:1) = X"0D"
 642 COMPUTE WS-Arg-Length-NUM =
 643 WS-Arg-Length-NUM
 644 - WS-Tally-NUM
 645 + 1
 646 ELSE
 647 COMPUTE WS-Arg-Length-NUM =
 648 WS-Arg-Length-NUM
 649 - WS-Tally-NUM
 650 ADD 1 TO WS-Tally-NUM
 651 END-IF
 652 MOVE SPACES
 653 TO L-Arg2-TXT(WS-Tally-NUM:WS-Arg-Length-NUM)
 654 ELSE
 655 MOVE SPACES
 656 TO L-Arg2-TXT(1:WS-Arg-Length-NUM)
 657 END-IF
 658 END-IF
 659 .

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-123

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 14
=============== ================================ ====== =============== ===
STREAMIO 000-Main 384 PROCEDURE
STREAMIO 020-Validate-Handle-Zero 433 PROCEDURE 393
STREAMIO 030-Validate-Handle-NonZero 439 PROCEDURE 388 396 399 402 407 412
STREAMIO 040-Check-WRITE-SCB-Return-CD 445 PROCEDURE 425 571
STREAMIO 050-Check-READ-SCB-Return-CD 456 PROCEDURE 583 595
STREAMIO 060-Identify-TEMP 467 PROCEDURE 494 509
STREAMIO 099-ERROR-Return 479 PROCEDURE 418 429 436 442 448 452 459 490
 536 545 549 558 615
STREAMIO 100-OPEN 486 PROCEDURE 394
STREAMIO 200-CLOSE 554 PROCEDURE 389
STREAMIO 300-WRITE 563 PROCEDURE 403 408 413
STREAMIO 400-READ 574 PROCEDURE 397
STREAMIO 500-READ-Delim 586 PROCEDURE 400
STREAMIO L-Arg2-TXT 381 LINKAGE 383 570* 577* 582* 589* 594* 600 601*
 641 653* 656*
STREAMIO L-SCB-DELIM-Unix-BOOL 380 [STREAMIOcb] 406
STREAMIO L-SCB-DELIM-Windows-BOOL 380 [STREAMIOcb] 411
STREAMIO L-SCB-Delimiter-Mode-CD 380 [STREAMIOcb]
STREAMIO L-SCB-Error-Routine-NUM 380 [STREAMIOcb] 480
STREAMIO L-SCB-Error-Routine-PTR 380 [STREAMIOcb] 380 481*
STREAMIO L-SCB-Filename-TXT 380 [STREAMIOcb] 391* 488 493 495* 507* 508 510 513
 515* 525* 538*
STREAMIO L-SCB-Func-CLOSE-BOOL 380 [STREAMIOcb] 387
STREAMIO L-SCB-Func-DELETE-BOOL 380 [STREAMIOcb] 390
STREAMIO L-SCB-Func-OPEN-BOOL 380 [STREAMIOcb] 392
STREAMIO L-SCB-Func-READ-BOOL 380 [STREAMIOcb] 395
STREAMIO L-SCB-Func-READ-Delim-BOOL 380 [STREAMIOcb] 398
STREAMIO L-SCB-Func-WRITE-BOOL 380 [STREAMIOcb] 401
STREAMIO L-SCB-Func-WRITE-Delim-BOOL 380 [STREAMIOcb] 404
STREAMIO L-SCB-Function-CD 380 [STREAMIOcb]
STREAMIO L-SCB-Handle-NUM 380 [STREAMIOcb] 420* 434 440 542* 555* 561* 566* 578*
 590* 608*
STREAMIO L-SCB-MODE-Both-BOOL 380 [STREAMIOcb] 487 532
STREAMIO L-SCB-Mode-CD 380 [STREAMIOcb]
STREAMIO L-SCB-MODE-Input-BOOL 380 [STREAMIOcb] 487 528
STREAMIO L-SCB-MODE-Output-BOOL 380 [STREAMIOcb] 530
STREAMIO L-SCB-Offset-NUM 380 [STREAMIOcb] 421* 426* 552* 567* 572* 579* 584* 591*
 603* 609* 624* 630* 639*
STREAMIO L-SCB-Return-CD 380 [STREAMIOcb] 385* 417* 428* 435* 441* 447* 451* 454*
 458* 462* 465* 489* 535* 544* 548* 551*
 557* 560* 604* 614*
STREAMIO L-StreamIO-Control-Block-TXT 378 LINKAGE 382
STREAMIO RANDOM PROCEDURE 498 517
STREAMIO RETURN-CODE PROCEDURE 446 450 457 461 543 547 556 565
 576 588 613 617
STREAMIO SECONDS-PAST-MIDNIGHT PROCEDURE 498 517
STREAMIO TRIM PROCEDURE 501 519 523 538*
STREAMIO WS-256-Byte-TXT 376 WORKING-STORAGE 511* 513* 523
STREAMIO WS-8-Digit-NUM 375 WORKING-STORAGE 497* 504 516* 522
STREAMIO WS-Access-Mode-CD 368 WORKING-STORAGE 529* 531* 533* 539*
STREAMIO WS-Arg-Length-NUM 369 WORKING-STORAGE 409* 414* 422* 426 565* 568* 572 576*
 577 580* 584 588* 589 592* 597 600
 601 603 605* 610* 636 642* 643 647*
 648 653 656

GNU COBOL 2.0 Programmers Guide STREAMIO – A Utility Subroutine to Simplify Stream I/O Sample Programs

11FEB2012 Version Page 10-124

GNU COBOL V2.0 11FEB2012 Cross-Reference Listing - GCic for Windows/MinGW Copyright (C) 2009 - 2013, Gary L. Cutler, GPL 2013/11/21
 E:/GNU-COBOL/samples/STREAMIO.cbl
PROGRAM-ID Identifier/Register/Function Defn Where Defined References (* = Updated) Page: 15
=============== ================================ ====== =============== ===
STREAMIO WS-Buffer-TXT 370 WORKING-STORAGE 607* 612*
STREAMIO WS-Delim-Buffer-TXT 371 WORKING-STORAGE 410* 415* 424*
STREAMIO WS-Env-Temp-TXT 372 WORKING-STORAGE 468* 470 472 475* 501 519
STREAMIO WS-Slash-CHR 373 WORKING-STORAGE 471* 473* 476* 502 520
STREAMIO WS-Tally-NUM 374 WORKING-STORAGE 596* 598* 599 620* 622* 623 626* 628*
 630 635* 637* 639 640 641 644 649
 650* 653

GNU COBOL 2.0 Programmers Guide Glossary of Terms

11FEB2012 Version Page 11-1

11. Glossary of Terms

There are many terms that are used throughout this document (as well as throughout ANY document dealing with the
COBOL language) that are used to make discussions of syntax and semantics more concise. The following is a list of
such terms and their definitions.

Alphanumeric
Literal

A string of characters enclosed within a pair of quotation marks (“) or apostrophes (‘). See section
1.8.

Collating
Sequence

The sequence in which the characters that are acceptable to a computer are ordered for purposes
of all types of sorting, merging, comparing, and processing. GNU COBOL programs may utilize
standard character-set collating sequences (such as that defined by the ASCII or EBCDIC
charactersets) or programmer-defined custom sequences as specified in the OBJECT-COMPUTER
paragraph (section 4.1.2) and defined in the SPECIAL-NAMES paragraph (section 4.1.4).

Compilation
Group

The collection of all compilation units being compiled by a single execution of the GNU COBOL
compiler.

Compilation Unit A single source file being compiled by the GNU COBOL compiler. A compilation unit may contain
one or more programs.

Division COBOL programs are broken into four major areas, called DIVISIONS. Divisions are used to collect
program components oriented toward specific similar goals together in a single place. The COBOL
divisions are:

 IDENTIFICATION DIVISION – names the program and, optionally, if it is a subprogram, defines
it’s high-level data initialization policy and/or global availability to other programs compiled in
the same compilation group.

 ENVIRONMENT DIVISION – defines characteristics of the environment in which the program
will be executed, such as files the program will be reading and/or writing, run-time switches
that may be used to pass information into the program from the operating system
environment and any special options that may be needed in order for the program to
properly compile; typically, those special options are used to enable COBOL programs created
using some other version of COBOL to be compiled and executed under a different version.

 DATA DIVISION – provides detailed descriptions of the files, data and data structures the
program will be working with.

 PROCEDURE DIVISION – contains the actual executable program code.

Dynamically-
loadable library

The GNU COBOL compiler can create dynamically-loadable library files when compiling
subprograms as their own separate compilation groups. On UNIX systems, these will be “.so” files
while on Windows systems these will be DLLs. Main programs can be created in this manner also.
The “-m” compiler switch is used to create dynamically-loadable libraries.

Dynamically-
loadable module

A synonym for Dynamically-loadable library.

Elementary Item A data item described as not being further logically subdivided.

Entry-point A spot in the PROCEDURE DIVISION where a program may begin execution when it is executed
from the operating system, invoked as a user-defined function or CALLed by another program.
Every program has at least one entry-point – known as the primary entry-point – which
corresponds to the first executable statement in the PROCEDURE DIVISION following the
DECLARATIVES area, if any. Additional entry-points may be defined via the ENTRY statement (see
section 6.4.14).

Entry-point
name

Every entry-point has a name. That name must be unique for all programs that comprise an
executable program. Entry-point names are defined using a subroutine’s PROGRAM-ID clause
(see section 3) or via ENTRY statements coded in the subroutine’s PROCEDURE DIVISION (see
section 6.4.14).

GNU COBOL 2.0 Programmers Guide Glossary of Terms

11FEB2012 Version Page 11-2

Executable file The GNU COBOL compiler can create operating-system appropriate files that may be executed
directly from the operating system environment. On Windows systems, these will be “.exe” files
whereas on UNIX systems they will have no specific extensions. The “-x” compiler switch is used
to create executable files. Only main programs should be compiled in this manner.

Figurative
constants

GNU COBOL, like other COBOL implementations, supports a number of reserved words that may
be used to represent a specific literal value. These are known as figurative constants. See section
1.9.

Group item A group item is an identifier that is broken down into sub-items. For example, a MAILING-
ADDRESS might be broken down into STREET-ADDRESS, APARTMENT-NUMBER, CITY, STATE and
ZIP-CODE components.

Identifiers These are data items a COBOL program will be working with. The vast majority of identifiers are
defined by the user (programmer) while a few are pre-defined by the GNU COBOL compiler.
Identifiers pre-defined by the compiler are referred to as registers. Other programming languages
generally refer to identifiers as “variables”.

Imperative
statement

There are two types of GNU COBOL statements that meet this definition:

1. A non-conditional GNU COBOL statement; i.e. one that performs an unconditional action and
lacks any decision-making capabilities (including EXCEPTION, ON SIZE ERROR and AT END
clauses), or…

2. A conditional GNU COBOL statement properly terminated with the correct “END-xxxx”
trailer.

Any PROCEDURE DIVISION statement can be made to be imperative– and therefore may be used
in circumstances that only allow imperative statements - under one or the other definition.

Intrinsic Function A built-in routine that accepts arguments and returns a value; syntactically, these may be used
most places where GNU COBOL identifiers are valid.

See section 6.1.7 for documentation on all supported intrinsic functions.

Level number A user-defined word expressed as a 1- or 2-digit number that indicates the hierarchical position of
a data item or the special properties of a data description entry.

Level numbers in the range 1 through 49 indicate the position of a data item in the hierarchical
structure of a logical record. Level numbers in the range 1 through 9 can be written either as a
single digit or as a zero followed by the significant digit.

Level numbers 66, 77, 78 and 88 identify special properties of a data description entry.

See sections 5.3, 5.4, 5.5 and 0.

Literal A numeric literal or an alphanumeric literal.

Main program A GNU COBOL program that is to be executed directly from an operating system or shell event.
Main programs are not executed from other programs unless such execution is accomplished via
the CALL “SYSTEM” facility.

Numeric literal A numeric constant. See section 1.8.

Primary Entry-
Point

See entry-point.

Procedure All executable code statements within a single PROCEDURE DIVISION paragraph or SECTION.

Procedure name A programmer-defined SECTION or paragraph name in the PROCEDURE DIVISION assigned to a
procedure. Procedure names serve as a means by which a statement may refer to the statements
that follow the procedure name.

GNU COBOL 2.0 Programmers Guide Glossary of Terms

11FEB2012 Version Page 11-3

Program A GNU COBOL main program or subprogram. Subprogram programs may be nested inside of
other programs and a main program may be followed by any number of subprogram programs in
the same compilation group.

Qualification The process of establishing a unique reference to a data item whose name is duplicated in a
program. This takes the form of using the duplicated data name and the name of any of its parent
data items, connected by “OF” or “IN” such that the combination of those two data names is
unique within the program.

Record The most-inclusive, highest level, data item. The level number for a record is 01. A record can be
either an elementary item or a group item.

Registers Special data items that are automatically defined for your use by the GNU COBOL compiler. See
section 6.1.8.

Reserved word A COBOL word specified in the list of words that can be used in a COBOL source program, but that
must not appear in the program as user-defined words or system names.

Sentence Any number of COBOL statements, followed by a period.

Statement A single COBOL instruction. Every statement starts with a verb which defines the overall action
the statement will take. Any additional syntax following the verb refines the actions that will be
taken.

Subprogram A user-defined function or a subroutine.

Subroutine A program executed from another via a GNU COBOL “CALL” statement (or the equivalent in
whatever programming language that other program was written in).

User-defined
Function

A user-written GNU COBOL subprogram that may be executed in a syntactically-similar manner to
that by which the various built-in intrinsic functions are executed.

User-defined
names

Either the name of an identifier or a procedure in the program. GNU COBOL limits user-defined
names to a maximum of 31 characters taken from the set of numeric digits, upper- and lower-
case letters, hyphens and underscores. A user-defined name may neither begin nor end with a
hyphen or underscore. User-defined names used as file names may additionally not begin with a
digit although - unlike many other programming languages - user-defined names used as
identifiers or procedure names may.

Verb A single COBOL reserved-word which defines an action a COBOL program will take at execution
time. Every COBOL statement begins with a verb. Some verbs perform relatively simple actions
(MOVE, STOP, SET, etc.) while others can perform extremely complex actions (SEARCH, SORT,
MERGE, STRING, UNSTRING, etc.).

GNU COBOL 2.0 Programmers Guide Glossary of Terms

11FEB2012 Version Page 11-4

GNU COBOL 2.0 Programmers Guide Index

11FEB2012 Version Page I

Index

"

"*" In Column 7, 1-17
"*>", 1-17
"/" In Column 7, 1-17

>

>>D, 1-17

A

ACCEPT, 5-19, 6-30
Command-Line Arguments, 6-32
CONSOLE, 6-32
Date/Time, 6-35
Environment, 6-33
Screen Data, 6-33
Screen Size, 6-35

ACCESS MODE, 4-12, 4-13
DYNAMIC, 6-49, 6-78, 6-79, 6-85, 6-96
RANDOM, 6-49, 6-78, 6-79, 6-85
SEQUENTIAL, 4-11, 4-12, 6-49, 6-85, 6-96

ADD
CORRESPONDING, 6-39
GIVING, 6-39
TO, 6-38

ADDRESS OF
FREE, 6-61
SET, 6-91

AFTER, 6-77
INSPECT, 6-68, 6-69
PERFORM VARYING, 6-76
PERFORM WITH TEST, 6-77
WRITE ADVANCING, 6-109

ALL
INSPECT, 6-68, 6-69
VALUE, 5-17

ALL PROCEDURES, 6-30
ALLOCATE, 5-6, 6-40
ALPHABET, 4-6
ALPHABETIC, 6-6
ALPHABETIC-LOWER, 6-6
ALPHABETIC-UPPER, 6-6
Alphanumeric Literal, 1-18
ALTER, 6-41
ALTERNATE RECORD KEY, 4-13, 6-96
ALTERNATE RECORD KEY fields, 6-79
ANY, 6-57
ANY LENGTH, 5-6
ARGUMENT-NUMBER, 6-32
ARGUMENT-VALUE, 6-32, 6-33
Arithmetic Expressions, 6-2
ASCENDING KEY

SORT, 6-94, 6-95
Table, 6-88

ASSIGN, 4-9
AT

ACCEPT, 6-34
DISPLAY, 6-51
END (READ), 6-78
END-OF-PAGE, 6-109

AUTO, 5-19

B

BACKGROUND-COLOR, 5-19, 5-23
Back-Tab Key, 5-19
BASED, 5-5, 5-6, 6-91
BEEP, 5-20
BEFORE

INSPECT, 6-68, 6-69
PERFORM WITH TEST, 6-77
WRITE ADVANCING, 6-109

BELL, 5-20
Big-Endian, 5-16
BLANK LINE, 5-20
BLANK SCREEN, 5-20
BLANK WHEN ZERO, 5-6, 5-20
BLINK, 5-20
BLOCK CONTAINS, 5-3
BY

CONTENT, 7-11
PERFORM VARYING, 6-76, 6-77
REFERENCE, 6-30, 6-43, 7-10, 7-12
VALUE, 6-30, 7-12

BY CONTENT, 7-4
BY REFERENCE, 7-4
BY VALUE, 7-4
BYTE-LENGTH, 5-25

C

C$CALLEDBY, 8-11
C$CHDIR, 8-11
C$COPY, 8-11
C$DELETE, 8-11
C$FILEINFO, 8-12
C$GETPID, 8-12
C$JUSTIFY, 8-12
C$MAKEDIR, 8-12
C$NARG, 8-12, 8-23
C$PARAMSIZE, 8-13
C$PRINTABLE, 8-13
C$SLEEP, 8-13
C$TOLOWER, 8-13
C$TOUPPER, 8-13
CALL, 6-6, 6-42, 10-1
CALL-CONVENTION, 6-42
Called Program, 7-1
Calling Program, 7-1
CANCEL, 6-44, 7-2
CBL_AND, 8-13
CBL_CHANGE_DIR, 8-14
CBL_CHECK_FILE_EXIST, 8-14
CBL_CLOSE_FILE, 8-14

GNU COBOL 2.0 Programmers Guide Index

11FEB2012 Version Page II

CBL_COPY_FILE, 8-15
CBL_CREATE_DIR, 8-15
CBL_CREATE_FILE, 8-15
CBL_DELETE_DIR, 8-15
CBL_DELETE_FILE, 8-15
CBL_EQ, 8-18
CBL_ERROR_PROC, 8-16
CBL_EXIT_PROC, 8-17
CBL_FLUSH_FILE, 8-18
CBL_GET_CSR_LOCN, 8-18
CBL_GET_SCR_SIZE, 8-19
CBL_IMP, 8-19
CBL_NIMP, 8-19
CBL_NOR, 8-20
CBL_NOT, 8-20
CBL_OC_NANOSLEEP, 8-20
CBL_OPEN_FILE, 8-15, 8-20
CBL_OR, 8-21
CBL_READ_FILE, 8-20, 8-21
CBL_RENAME_FILE, 8-21
CBL_TOUPPER, 8-22
CBL_WRITE_FILE, 8-15, 8-20, 8-22
CBL_XOR, 8-22
CDF Statements

>>DEFINE, 2-2
>>IF, 2-3
>>SET, 2-4
>>SOURCE, 2-4
>>TURN, 2-5
COPY, 2-1
REPLACE, 2-2

CHAIN, 6-29
CHAINING, 6-29
CHARACTERS, 6-69
CLASS, 4-6
CLASSIFICATION, 4-2
CLOSE, 6-26, 6-45, 6-75
COB-CRT-STATUS, 4-4, 6-36
cobcrun, 8-7
CODE-SET, 5-3
COL, 5-20
Collating Sequence, 10-1
COLLATING SEQUENCE, 4-2, 4-8
COLUMN, 5-19, 5-20
Column 7

"*", 1-17
"/", 1-17
"D", 1-17

COLUMNS, 6-35
Combined Conditions, 6-8
COMMAND-LINE, 6-32
COMMIT, 6-26, 6-46, 6-85
COMMON, 3-1
Compilation Group, 10-1
Compiler Switches

All Switches, 8-1

-b, 8-3
-conf, 8-5
-fdebugging-line, 1-17, 4-2
-ffold-copy, 2-4
-ffunctions-all, 4-3

-fixed, 2-4
-fnotrunc, 8-26
-foptional-file, 4-8
-free, 1-14, 1-15, 2-4
-fsyntax-extension, 4-6
-g, 6-14
-m, 8-3, 8-7, 10-1
-o, 8-3
-S, 8-3
-Wobsolete, 3-1
-x, 8-3, 8-7, 10-2

COMPUTE, 6-47
Condition Names, 6-5
Conditional Expressions, 6-2, 6-5
Conditions

Combined, 6-8
Level-88 Condition Names, 6-5
Negated, 6-8
Relation, 6-7
Switch Status, 6-7

Configuration Files, 8-5
CONFIGURATION SECTION, 4-1
CONSOLE, 6-50
CONSOLE IS CRT, 4-4
CONSTANT, 2-3, 5-25
Constant Descriptions, 5-25
CONTINUE, 6-48
CONVERSION, 6-34, 6-51
CONVERTING, 6-68, 6-69, 6-104
CORRESPONDING, 6-39
COUNT, 6-107
CRT, 6-50
CRT STATUS, 4-4, 6-36
CURRENCY SIGN, 4-4
CURSOR IS, 4-5

D

D In Column 7, 1-17
DATA DIVISION, 1-9, 1-12
DATA RECORD, 5-3
DATE, 6-35
DATE YYYYMMDD, 6-35
DAY, 6-35
DAY YYYYDDD, 6-35
DAY-OF-WEEK, 6-35
DEBUGGING MODE, 4-2
DECIMAL POINT IS COMMA, 4-4
DECLARATIVES, 6-30, 6-49, 6-75, 10-1
DEFAULT, 6-66
DEFINED, 2-3
DELETE, 6-49, 6-75
DELIMITED BY

STRING, 6-99
UNSTRING, 6-106

DELIMITED BY SIZE, 6-99
DELIMITER, 6-107
DESCENDING KEY

SORT, 6-94, 6-95
Table, 6-88

DISC, 4-9

GNU COBOL 2.0 Programmers Guide Index

11FEB2012 Version Page III

DISK, 4-9, 5-3
DISPLAY, 5-19

Command-Line Arguments, 6-50
CONSOLE, 6-50
Environment, 6-50
Screen Data, 6-51

DISPLAY (ASSIGN), 4-9
DIVIDE

BY/GIVING, 6-54
BY/REMAINDER, 6-55
INTO, 6-53
INTO/GIVING, 6-53
INTO/REMAINDER, 6-54

DIVISION, 10-1
DYNAMIC, 4-12, 4-13
Dynamically-Loadable Library, 10-1

E

Elementary Item, 10-1
ELSE, 6-65
EMPTY-CHECK, 5-23
END-IF, 6-65
ENTRY, 6-56, 6-90, 10-1
Entry Point, 10-1
ENVIRONMENT, 6-33
ENVIRONMENT DIVISION, 1-9, 4-1
Environment Variables

COB_CC, 8-4
COB_CFLAGS, 8-4
COB_CONFIG_DIR, 8-4
COB_CONFIG_PATH, 8-5
COB_COPY_DIR, 8-4, 8-5
COB_DISPLAY_WARNINGS, 8-8
COB_LDADD, 8-4
COB_LDFLAGS, 8-4
COB_LIBRARY_PATH, 8-8
COB_LIBS, 8-4
COB_PRE_LOAD, 8-8
COB_SCREEN_ESC, 6-34, 8-9
COB_SCREEN_EXCEPTIONS, 6-34, 8-9
COB_SET_DEBUG, 8-8
COB_SET_TRACE, 8-9
COB_SORT_MEMORY, 8-9
COB_SWITCH_n, 8-9
COB_SYNC, 8-9
COBCPY, 8-4
dd_literal-1, 4-9
DD_literal-1, 4-9
LD_LIBRARY_PATH, 8-4
literal-1, 4-9
PATH, 8-10
TEMP, 8-10
TMP, 8-5, 8-10
TMPDIR, 8-5, 8-10

ENVIRONMENT-NAME, 6-33
ENVIRONMENT-VALUE, 6-33
ERASE EOL, 5-21
ERASE EOS, 5-21
Error Procedure (user-defined), 6-75, 8-16
ESCAPE KEY, 6-36

EVALUATE, 6-57
EVENT STATUS, 4-5
EXCEPTION

ACCEPT, 6-37
CALL, 6-42
DISPLAY, 6-52

Executable File, 10-2
EXIT, 6-59

PARAGRAPH, 6-59, 6-71
PERFORM, 6-59
PERFORM CYCLE, 6-59
PROGRAM, 6-71, 6-93, 6-95
SECTION, 6-59, 6-71
Simple, 6-59

Exit Procedure (user-defined), 8-17
Expressions

Arithmetic, 6-2
Conditional, 6-2, 6-5

EXTEND, 6-75, 6-108
EXTERNAL, 4-8, 5-5

FD, 5-2, 5-5

F

FD, 6-108, 6-109
-fdebugging-line, 1-17, 4-2
-ffold-copy, 2-4
-ffunctions-all, 4-3
Figurative Constant, 1-19, 10-2
File Description, 6-108, 6-109
FILE SECTION, 1-9
FILE STATUS, 4-9
FILE-CONTROL, 1-9, 4-8
FILLER, 5-5
FIRST

INSPECT, 6-68, 6-69
-fixed, 2-4
Fixed Format Mode, 1-14
FOLDCOPYNAME, 2-4
-foptional-file, 4-8
FOREGROUND-COLOR, 5-21, 5-23
FOREVER, 6-76, 6-77
-free, 1-14, 1-15, 2-4
FREE, 6-61
Free Format Mode, 1-15
FROM

PERFORM VARYING, 6-76
REWRITE, 6-85
Screen Item Description, 5-21
WRITE, 6-108

-fsyntax-extention, 4-6
FULL, 5-21
Function

User-Defined, 7-1
FUNCTION-ID, 3-1

G

GENERATE, 6-62
GIVING

CALL, 6-42

GNU COBOL 2.0 Programmers Guide Index

11FEB2012 Version Page IV

MERGE, 6-71
SORT, 6-94
STOP, 6-98

GLOBAL, 6-30
FD, 5-2, 5-5

GO TO, 6-71, 6-76, 6-93, 6-95
DEPENDING ON, 6-64
Simple, 6-64

GOBACK, 6-60, 6-63, 6-71, 6-93, 6-95, 8-17
Group Item, 10-2

H

HIGHLIGHT, 5-22

I

IDENTIFICATION DIVISION, 3-1
Identifier, 10-2
IF, 6-65
IGNORING LOCK, 6-26
Imperative Statement, 10-2
INDEXED BY, 6-88, 6-91
INITIAL, 3-1, 6-42
INITIALIZE, 6-40

Verb, 6-66
INITIATE, 6-67
INPUT, 6-75
INPUT PROCEDURE, 6-82, 6-93
INPUT-OUTPUT SECTION, 1-9, 4-7
INSPECT, 6-68, 6-104
Intrinsic Function, 10-2
Intrinsic Functions (Supported)

ABS, 6-11
ACOS, 6-11
ANNUITY, 6-11
ASIN, 6-11
ATAN, 6-11
BYTE-LENGTH, 6-11
CHAR, 6-11
COMBINED-DATETIME, 6-12
CONCATENATE, 6-12
COS, 6-12
CURRENCY-SYMBOL, 6-12
CURRENT-DATE, 6-12
DATE-OF-INTEGER, 6-13
DATE-TO-YYYYMMDD, 6-13
DAY-OF-INTEGER, 6-13
DAY-TO-YYYYDDD, 6-13
E, 6-13
EXCEPTION-FILE, 6-13
EXCEPTION-LOCATION, 6-14
EXCEPTION-STATEMENT, 6-14
EXCEPTION-STATUS, 6-14
EXP, 6-14
EXP10, 6-14
FACTORIAL, 6-14
FRACTIONAL-PART, 6-14
HIGHEST-ALGEBRAIC, 6-15
INTEGER, 6-15
INTEGER-OF-DATE, 6-15

INTEGER-OF-DAY, 6-15
INTEGER-PART, 6-15
LENGTH, 6-15
LENGTH-AN, 6-15
LOCALE-COMPARE, 6-15
LOCALE-DATE, 6-16
LOCALE-TIME, 6-16
LOCALE-TIME-FROM-SECS, 6-16
LOG, 6-16
LOG10, 6-16
LOWER-CASE, 6-16
LOWEST-ALGEBRAIC, 6-17
MAX, 6-17, 6-22
MIDRANGE, 6-17
MOD, 6-17
MODULE-CALLER-ID, 6-17
MODULE-DATE, 6-17
MODULE-FORMATTED-DATE, 6-17
MODULE-ID, 6-18
MODULE-PATH, 6-18
MODULE-SOURCE, 6-18
MODULE-TIME, 6-18
MONETARY-DECIMAL-POINT, 6-19
MONETARY-THOUSANDS-SEPARATOR, 6-19
NUMERIC-DECIMAL-POINT, 6-19
NUMERIC-THOUSANDS-SEPARATOR, 6-19
NUMVAL, 1-18, 6-19
NUMVAL-C, 1-18, 6-20
NUMVAL-F, 6-20
ORD, 6-20
ORD-MAX, 6-20
ORD-MIN, 6-21
PI, 6-21
PRESENT-VALUE, 6-21
RANDOM, 6-21
RANGE, 6-21
REM, 6-21
REVERSE, 6-21
SECONDS-FROM-FORMATTED-TIME, 6-22
SECONDS-PAST-MIDNIGHT, 6-22
SIGN, 6-22
SIN, 6-22
SQRT, 6-22
STORED-CHAR-LENGTH, 6-22
SUBSTITUTE, 6-22, 6-23
SUM, 6-23
TAN, 6-23
TEST-DATE-YYYYMMDD, 6-23
TEST-DAY-YYYYDDD, 6-23
TEST-NUMVAL, 6-23
TEST-NUMVAL-C, 6-23
TEST-NUMVAL-F, 6-23
TRIM, 6-23
UPPER-CASE, 6-24
VARIANCE, 6-24
WHEN-COMPILED, 6-24
YEAR-TO-YYYY, 6-24

Intrinsic Functions (Unsupported)
BOOLEAN-OF-INTEGER, 6-10
CHAR-NATIONAL, 6-10
DISPLAY-OF, 6-11

GNU COBOL 2.0 Programmers Guide Index

11FEB2012 Version Page V

EXCEPTION-FILE-N, 6-10
EXCEPTION-LOCATION-N, 6-10
INTEGER-OF-BOOLEAN, 6-11
NATIONAL-OF, 6-10
STANDARD-COMPARE, 6-10

INVALID KEY
DELETE, 6-49
REWRITE, 6-85
START, 6-96
WRITE, 6-108

I-O, 6-75, 6-108
I-O-CONTROL, 4-14

J

JUSTIFIED RIGHT, 5-6, 5-22

K

KEY (START), 6-96
KEYBOARD (ASSIGN), 4-9

L

LABEL RECORD, 5-3
LEADING

INSPECT, 6-68, 6-69
SIGN, 5-13, 5-24

LEFTLINE, 5-22
LENGTH, 5-25
LENGTH OF, 6-38

Use With Alphanumeric Literals, 1-20
Level

66, 5-19
78, 5-19, 5-25
88, 5-19

Level Number, 10-2
LINAGE, 5-1, 5-3, 6-24, 6-109
LINE, 5-19, 5-22
LINE ADVANCING, 1-7, 6-108
LINES

ACCEPT, 6-35
AT BOTTOM, 6-109
AT TOP, 6-109
WRITE ADVANCING, 6-109

LINKAGE SECTION, 6-29, 6-91
Literal, 10-2
Little-Endian, 5-16
LOCALE, 4-3, 4-4
LOCAL-STORAGE SECTION, 6-43
LOCK, 4-10
LOWLIGHT, 5-22

M

Main Program, 10-2
MEMORY SIZE, 4-2
MERGE, 6-70
MOVE

CORRESPONDING, 6-72
Simple, 6-72

MULTIPLE FILE TAPE, 4-14
MULTIPLY

BY, 6-73
GIVING, 6-73

N

NEAREST-AWAY-FROM-ZERO, 6-27
Negated Conditions, 6-8
NEGATIVE, 6-6
Nested Subprograms, 3-1
NEXT, 6-78
NEXT SENTENCE, 6-74
NO ADVANCING, 6-50
NO REWIND, 6-45
NO-ECHO, 5-23
NOFOLDCOPYNAME, 2-4
NOT AT END, 6-78
NOT AT END-OF-PAGE, 6-109
NOT EXCEPTION

ACCEPT, 6-37
DISPLAY, 6-52

NOT INVALID KEY
DELETE, 6-49
READ, 6-80
READ, 6-79
REWRITE, 6-85
START, 6-97
WRITE, 6-108

NOT ON OVERFLOW
STRING, 6-99
UNSTRING, 6-107

NOT ON SIZE ERROR
ADD, 6-38
COMPUTE, 6-47
DIVIDE, 6-53, 6-54, 6-55
MULTIPLY, 6-73
SUBTRACT, 6-100

NUMBER-OF-CALL-PARAMETERS, 8-13, 8-23
NUMERIC, 6-6
Numeric Literal, 1-18, 10-2

O

OBJECT-COMPUTER, 4-2
OCCURS, 5-6, 6-88
OMITTED, 6-6
ON OVERFLOW

STRING, 6-99
UNSTRING, 6-107

ON SIZE ERROR
ADD, 6-38
COMPUTE, 6-47
DIVIDE, 6-53, 6-54, 6-55
MULTIPLY, 6-73
SUBTRACT, 6-100

OPEN, 6-75, 6-78, 6-79, 6-96, 6-108
OPTIONAL, 4-8
ORGANIZATION

INDEXED, 1-8, 4-13, 6-49, 6-78, 6-85, 6-96, 6-108, 8-9

GNU COBOL 2.0 Programmers Guide Index

11FEB2012 Version Page VI

LINE SEQUENTIAL, 1-6, 4-11, 5-3, 6-45, 6-70, 6-85, 6-93, 6-
108

RECORD BINARY SEQUENTIAL, 1-7, 4-11, 5-3, 6-45, 6-70,
6-85, 6-93, 6-108

RELATIVE, 1-8, 4-12, 6-49, 6-85, 6-96, 6-108
OUTPUT, 6-75, 6-108
OUTPUT PROCEDURE, 6-84

MERGE, 6-71
SORT, 6-94

OVERFLOW
CALL, 6-42

OVERLINE, 5-22
OVERRIDE, 2-3

P

PAGE
WRITE ADVANCING, 6-109

PARAMETER
CDF, 2-3

PERFORM, 6-31, 6-59
Inline, 6-77
Procedural, 6-76

POSITIVE, 6-6
PREVIOUS, 6-78
Primary Entry-Point Name, 3-1
PRIMARY RECORD KEY, 6-79
PRINTER, 4-9, 4-12, 6-50
Procedure, 10-2
PROCEDURE DIVISION, 6-29
Procedure Name, 10-2
Program, 10-2

Called, 7-1
Calling, 7-1

PROGRAM COLLATING SEQUENCE, 6-94, 6-95
PROGRAM-ID, 3-1
PROGRAM-POINTER, 6-90
PROMPT, 5-23

Q

Qualification, 6-1, 10-2

R

RANDOM, 4-9, 4-12, 4-13
READ, 6-49, 6-75, 6-78, 6-79, 6-85
READY TRACE, 6-81
Record, 10-3
RECORD CONTAINS, 5-3, 6-85
RECORD DELIMITER, 4-8
RECORD IS VARYING, 5-3, 6-85
RECORD KEY, 4-13, 6-49, 6-85, 6-96
RECORDING MODE, 5-3
REDEFINES, 5-5, 5-12
REEL, 6-45
Reference Modifier, 6-2
Registers, 10-3
Relation Conditions, 6-7
RELATIVE KEY, 4-12, 6-49, 6-85, 6-96
RELEASE, 6-82, 6-93

REPLACING
INITIALIZE, 6-66

REPLACING (COPY), 2-1
REPLACING (INSPECT), 6-68, 6-69
REPORT IS, 5-3
REPORT SECTION, 5-1
REPOSITORY, 4-3, 6-10
REQUIRED, 5-23
RESERVE, 4-8
Reserved Word, 10-3
RESET TRACE, 6-83
RETURN, 6-71, 6-84, 6-94
RETURN-CODE, 6-98, 8-11, 8-12, 8-14, 8-15, 8-16, 8-17, 8-18,

8-19, 8-20, 8-21, 8-23
RETURNING, 6-29, 6-30, 6-40

CALL, 6-42
STOP, 6-98

REVERSED, 6-75
REVERSE-VIDEO, 5-23
REWRITE, 6-85
ROLLBACK, 6-26, 6-86
ROUNDED, 6-27

DIVIDE, 6-55

S

SAME RECORD AREA, 4-14, 6-70
SAME SORT AREA, 4-14, 6-70
SAME SORT-MERGE AREA, 4-14, 6-70
SCREEN CONTROL, 4-5
SCREEN SECTION, 1-12
SCROLL, 6-34
SEARCH

(Sequential), 6-87
ALL (Binary Search), 6-88

SECURE, 5-23
SEGMENT-LIMIT, 4-2
SELECT, 1-9
Sentence, 10-3
SEPARATE CHARACTER, 5-13, 5-24
SEQUENTIAL, 4-12, 4-13
SET

>>IF Option, 2-3
Address, 6-90
Condition Name, 6-91
ENVIRONMENT, 6-90
Index, 6-91
Program-Pointer, 6-90
Switch, 6-92
UP/DOWN, 6-91

SET ADDRESS, 5-6
SET ATTRIBUTE, 6-92
SHARING, 4-10, 6-75
SHARING WITH ALL OTHER, 4-8
Shift-Tab Key, 5-19
SIGN, 5-13, 5-24
SIZE, 6-30
SIZE IS AUTO, 6-30
SORT

File, 6-93
Table, 6-95

GNU COBOL 2.0 Programmers Guide Index

11FEB2012 Version Page VII

SORT STATUS, 4-9
SOURCE-COMPUTER, 4-2
Special Registers, 10-3
SPECIAL-NAMES, 4-3, 4-4, 6-50, 8-24
Split Keys, 4-13
START, 6-75, 6-96
Statement, 10-3
STOP RUN, 6-63, 6-71, 6-76, 6-93, 6-95, 6-98, 8-17
STRING, 6-99
Subprogram, 10-3
Subroutine, 10-3
Subscripts, 6-1
SUBTRACT

CORRESPONDING, 6-101
FROM, 6-100
GIVING, 6-100

SUPPRESS, 6-102
Switch Status Conditions, 6-7
SWITCH-n, 4-6, 8-23, 8-24
SYMBOLIC CHARACTERS, 4-7
SYNCHRONIZED, 5-13
SYSTEM, 8-23
SYSTEM-DEFAULT, 4-3

T

Tab Key, 5-19
TALLYING, 6-68

UNSTRING, 6-107
TAPE, 4-9
TERMINATE, 6-103
THROUGH, 6-57, 6-76
THRU, 6-57, 6-76
TIME, 6-35
TIMEOUT, 6-34
TIME-OUT, 6-34
TIMES, 6-59, 6-76, 6-77
TO

Screen Item Description, 5-21
TO VALUE, 6-66
TRACE

COB_SET_TRACE Environment Variable, 8-9
READY, 6-81
RESET, 6-83

TRAILING
INSPECT, 6-68, 6-69
SIGN, 5-13, 5-24

TRANSFORM, 6-104
TRUNCATION, 6-27

U

UNDERLINE, 5-22
UNIT, 6-45
UNLOCK, 6-26, 6-46, 6-75, 6-105
UNSTRING, 6-106
UNTIL, 6-59, 6-76, 6-77
UNTIL EXIT, 6-76
UPDATE, 6-34
UPON, 6-50
USAGE, 5-14

BINARY-CHAR, 7-9, 8-23
BINARY-CHAR SIGNED, 7-9
BINARY-CHAR UNSIGNED, 7-9
BINARY-C-LONG SIGNED, 7-9
BINARY-DOUBLE, 7-9
BINARY-DOUBLE SIGNED, 7-9
BINARY-DOUBLE UNSIGNED, 7-9
BINARY-INT, 7-9
BINARY-LONG, 7-9
BINARY-LONG SIGNED, 7-9
BINARY-LONG UNSIGNED, 7-9
BINARY-LONG-LONG, 7-9
BINARY-SHORT, 7-9
BINARY-SHORT SIGNED, 7-9
BINARY-SHORT UNSIGNED, 7-9
COMPUTATIONAL-1, 7-9
COMPUTATIONAL-2, 7-10
DISPLAY, 6-5
INDEX, 6-91
POINTER, 6-5, 6-40, 6-91
PROGRAM POINTER, 6-5
PROGRAM-POINTER, 6-91, 8-16, 8-17

USE AFTER STANDARD ERROR PROCEDURE, 6-30
USE BEFORE REPORTING, 6-30
USE FOR DEBUGGING, 6-30

COB_SET_DEBUG Environment Variable, 8-8
USER-DEFAULT, 4-3
User-Defined Function, 7-1, 10-3
user-defined name, 10-3
User-Defined Name, 10-3
USING, 6-29

Screen Item Description, 5-21
USING (CALL), 6-43
USING (SORT), 6-93

V

VALUE, 5-17, 5-24, 5-26
VALUE OF, 5-3
VARYING, 6-59, 6-76, 6-77
Verb, 10-3

W

-Wall, 6-75
WHEN, 6-57
WITH

DUPLICATES IN ORDER, 6-70, 6-93, 6-95
IGNORE LOCK, 6-26
LOCK, 6-26

CLOSE, 6-45
OPEN, 6-75

NO LOCK, 6-26
NO REWIND

OPEN, 6-75
POINTER

STRING, 6-99
UNSTRING, 6-106

TEST, 6-77
WITH FILLER, 6-66
WITH WAIT, 6-27

GNU COBOL 2.0 Programmers Guide Index

11FEB2012 Version Page VIII

-Wobsolete, 6-75
WRITE, 6-108

X

X"E4", 8-24

X"E5", 8-24
X"F4", 8-24
X"F5", 8-25
X”91”, 8-23

GNU COBOL 2.0 Programmers Guide GNU Free Documentation License

11FEB2012 Version Page IX

GNU Free Documentation License

Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

 <http://fsf.org/>

 Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially.

Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or

whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below,

refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical

connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero

Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors

GNU COBOL 2.0 Programmers Guide GNU Free Documentation License

11FEB2012 Version Page X

or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent.

An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is
called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to
this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition.

Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-

GNU COBOL 2.0 Programmers Guide GNU Free Documentation License

11FEB2012 Version Page XI

network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material.

If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's
license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History"
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

GNU COBOL 2.0 Programmers Guide GNU Free Documentation License

11FEB2012 Version Page XII

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice.

These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number.

Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is
not used to limit the legal rights of the compilation's users beyond what the individual works permit.

When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.

GNU COBOL 2.0 Programmers Guide GNU Free Documentation License

11FEB2012 Version Page XIII

Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4.

Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4)
to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies
you of the violation by some reasonable means, this is the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number
of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

GNU COBOL 2.0 Programmers Guide GNU Free Documentation License

11FEB2012 Version Page XIV

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under
this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

	1. Introduction
	1.1. What is GNU COBOL?
	1.2. Additional References and Documents
	1.3. Introducing COBOL
	1.3.1. “I Heard COBOL is a Dead Language!”
	1.3.2. Programmer Productivity – The “Holy Grail”
	1.3.3. Notable COBOL/GNU COBOL Features
	1.3.3.1. Basic Program Readability
	1.3.3.2. COBOL Program Structure
	1.3.3.3. Copybooks
	1.3.3.4. Structured Data
	1.3.3.5. Files
	1.3.3.6. Table Handling
	1.3.3.7. Sorting and Merging Data
	1.3.3.8. String Manipulation
	1.3.3.9. Textual-User Interface (TUI) Features

	1.4. Syntax Description Conventions
	1.5. General GNU COBOL Program Format
	1.5.1. Source Line Format
	1.5.1.1. Fixed Format Mode
	1.5.1.2. Free Format Mode

	1.5.2. Program Structure

	1.6. In-Program Documentation (i.e. “Comments”)
	1.7. Use of Commas and Semicolons
	1.8. Use of Literals
	1.8.1. Numeric Literals
	1.8.2. Alphanumeric Literals

	1.9. Use of Figurative Constants
	1.10. User-Defined Names
	1.11. Use of LENGTH OF

	2. The GNU COBOL Compiler Directing Facility [CDF]
	2.1. Text Manipulation Statements
	2.1.1. The COPY Statement
	2.1.2. The REPLACE Statement

	2.2. CDF Directives
	2.2.1. The >>DEFINE Directive
	2.2.2. The >>IF Directive
	2.2.3. The >>SET Directive
	2.2.4. The >>SOURCE Directive
	2.2.5. The >>TURN Directive

	3. IDENTIFICATION DIVISION
	4. ENVIRONMENT DIVISION
	4.1. CONFIGURATION SECTION
	4.1.1. SOURCE-COMPUTER Paragraph
	4.1.2. OBJECT-COMPUTER Paragraph
	4.1.3. REPOSITORY Paragraph
	4.1.4. SPECIAL-NAMES Paragraph
	4.1.4.1. The alphabet-name Clause
	4.1.4.2. The class-name Clause
	4.1.4.3. The switch-definition Clause
	4.1.4.4. The symbolic-characters clause

	4.2. INPUT-OUTPUT SECTION
	4.2.1. File SELECT Statement
	4.2.1.1. SELECT Without an “organization-clause”
	4.2.1.2. ORGANIZATION SEQUENTIAL Files
	4.2.1.3. ORGANIZATION LINE SEQUENTIAL Files
	ORGANIZATION RELATIVE Files
	4.2.1.4. ORGANIZATION INDEXED Files

	4.2.2. I-O-CONTROL Paragraph

	5. DATA DIVISION
	5.1. File Or Sort/Merge File Descriptions
	5.1.1. Record Descriptions

	5.2. Describing Data Items
	5.2.1. Defining non-SCREEN SECTION Data Items
	5.2.1.1. ANY LENGTH Clause
	5.2.1.2. BASED Clause
	5.2.1.3. BLANK WHEN ZERO Clause
	5.2.1.4. JUSTIFIED Clause
	5.2.1.5. OCCURS Clause
	5.2.1.6. PICTURE Clause
	5.2.1.7. REDEFINES Clause
	5.2.1.8. RENAMES Clause
	5.2.1.9. SIGN Clause
	5.2.1.10. SYNCHRONIZED Clause
	5.2.1.11. USAGE Clause
	5.2.1.12. VALUE Clause

	5.2.2. Defining SCREEN SECTION Data Items
	5.2.2.1. AUTO | AUTO-SKIP | AUTOTERMINATE Clause
	5.2.2.2. BACKGROUND-COLOR Clause
	5.2.2.3. BEEP | BELL Clause
	5.2.2.4. BLANK LINE and BLANK SCREEN Clauses
	5.2.2.5. BLANK WHEN ZERO Clause
	5.2.2.6. BLINK Clause
	5.2.2.7. COLUMN Clause
	5.2.2.8. ERASE EOL and ERASE EOS Clauses
	5.2.2.9. FOREGROUND-COLOR Clause
	5.2.2.10. FROM, TO and USING Clauses
	5.2.2.11. FULL | LENGTH-CHECK Clause
	5.2.2.12. HIGHLIGHT and LOWLIGHT Clauses
	5.2.2.13. JUSTIFIED Clause
	5.2.2.14. LEFTLINE, OVERLINE and UNDERLINE Clauses
	5.2.2.15. LINE Clause
	5.2.2.16. OCCURS Clause
	5.2.2.17. PICTURE Clause
	5.2.2.18. PROMPT Clause
	5.2.2.19. REQUIRED | EMPTY-CHECK Clause
	5.2.2.20. REVERSE-VIDEO Clause
	5.2.2.21. SECURE | NO-ECHO Clause
	5.2.2.22. SIGN Clause
	5.2.2.23. VALUE Clause

	5.2.3. 01-Level Constant Descriptions
	5.2.4. 66-Level Data Descriptions (RENAMES)
	5.2.5. 77-Level Data Descriptions
	5.2.6. 78-Level Constant Descriptions
	5.2.7. 88-Level Condition Names

	6. PROCEDURE DIVISION
	6.1. General PROCEDURE DIVISION Components
	6.1.1. General Format of the PROCEDURE DIVISION
	6.1.2. General Format for Subprogram Arguments
	6.1.3. PROCEDURE DIVISION Sections and Paragraphs
	6.1.4. General Format for DECLARATIVES Procedures
	6.1.5. Table References
	6.1.6. Qualification of Data Names
	6.1.7. Reference Modifiers
	6.1.8. Expressions
	6.1.8.1. Arithmetic Expressions
	6.1.8.2. Conditional Expressions
	6.1.8.2.1. Condition Names (Level-88 Items)
	6.1.8.2.2. Class Conditions
	6.1.8.2.3. Sign Conditions
	6.1.8.2.4. Switch-Status Conditions
	6.1.8.2.5. Relation Conditions
	6.1.8.2.6. Combined Conditions
	6.1.8.2.7. Negated Conditions

	6.1.9. Use of Periods (.)
	6.1.10. Use of “VERB” / “END-VERB” Constructs
	6.1.11. Controlling Concurrent Access to Files
	6.1.11.1. File Sharing
	6.1.11.2. Record Locking

	6.1.12. Common Clauses On Executable Statements
	6.1.12.1. AT END / NOT AT END
	6.1.12.2. CORRESPONDING Option
	6.1.12.3. INVALID KEY / NOT INVALID KEY
	6.1.12.4. ON EXCEPTION / NOT ON EXCEPTION
	6.1.12.5. ON OVERFLOW / NOT ON OVERFLOW
	6.1.12.6. ON SIZE ERROR / NOT ON SIZE ERROR
	6.1.12.7. Rounding Options

	6.1.13. Special Registers
	6.1.14. Intrinsic Functions
	6.1.14.1. ABS(number)
	6.1.14.2. ACOS(cosine)
	6.1.14.3. ANNUITY(interest-rate, number-of-periods)
	6.1.14.4. ASIN(sine)
	6.1.14.5. ATAN(tangent)
	6.1.14.6. BYTE-LENGTH(string)
	6.1.14.7. CHAR(integer)
	6.1.14.8. COMBINED-DATETIME(days, seconds)
	6.1.14.9. CONCATENATE(string-1 [, string-2] …)
	6.1.14.10. COS(angle)
	6.1.14.11. CURRENCY-SYMBOL
	6.1.14.12. CURRENT-DATE
	6.1.14.13. DATE-OF-INTEGER(integer)
	6.1.14.14. DATE-TO-YYYYMMDD(yymmdd [, yy-cutoff])
	6.1.14.15. DAY-OF-INTEGER(integer)
	6.1.14.16. DAY-TO-YYYYDDD(yyddd [, yy-cutoff])
	6.1.14.17. E
	6.1.14.18. EXCEPTION-FILE
	6.1.14.19. EXCEPTION-LOCATION
	6.1.14.20. EXCEPTION-STATEMENT
	6.1.14.21. EXCEPTION-STATUS
	6.1.14.22. EXP(number)
	6.1.14.23. EXP10(number)
	6.1.14.24. FACTORIAL(number)
	6.1.14.25. FRACTION-PART(number)
	6.1.14.26. HIGHEST-ALGEBRAIC(numeric-identifier)
	6.1.14.27. INTEGER(number)
	6.1.14.28. INTEGER-OF-DATE(date)
	6.1.14.29. INTEGER-OF-DAY(date)
	6.1.14.30. INTEGER-PART(number)
	6.1.14.31. LENGTH(string)
	6.1.14.32. LENGTH-AN(string)
	6.1.14.33. LOCALE-COMPARE(argument-1, argument-2 [, locale])
	6.1.14.34. LOCALE-DATE(date [, locale])
	6.1.14.35. LOCALE-TIME(time [, locale])
	6.1.14.36. LOCALE-TIME-FROM-SECS(seconds [, locale])
	6.1.14.37. LOG(number)
	6.1.14.38. LOG10(number)
	6.1.14.39. LOWER-CASE(string)
	6.1.14.40. LOWEST-ALGEBRAIC(numeric-identifier)
	6.1.14.41. MAX(number-1 [, number-2] …)
	6.1.14.42. MEAN(number-1 [, number-2] …)
	6.1.14.43. MEDIAN(number-1 [, number-2] …)
	6.1.14.44. MIDRANGE(number-1 [, number-2] …)
	6.1.14.45. MIN(number-1 [, number-2] …)
	6.1.14.46. MOD(value, modulus)
	6.1.14.47. MODULE-CALLER-ID
	6.1.14.48. MODULE-DATE
	6.1.14.49. MODULE-FORMATTED-DATE
	6.1.14.50. MODULE-ID
	6.1.14.51. MODULE-PATH
	6.1.14.52. MODULE-SOURCE
	6.1.14.53. MODULE-TIME
	6.1.14.54. MONETARY-DECIMAL-POINT
	6.1.14.55. MONETARY-THOUSANDS-SEPARATOR
	6.1.14.56. NUMERIC-DECIMAL-POINT
	6.1.14.57. NUMERIC-THOUSANDS-SEPARATOR
	6.1.14.58. NUMVAL(string)
	6.1.14.59. NUMVAL-C(string [, symbol])
	6.1.14.60. NUMVAL-F(string)
	6.1.14.61. ORD(char)
	6.1.14.62. ORD-MAX(char-1 [, char-2] …)
	6.1.14.63. ORD-MIN(char-1 [, char-2] …)
	6.1.14.64. PI
	6.1.14.65. PRESENT-VALUE(rate, value-1 [, value-2])
	6.1.14.66. RANDOM [(seed)]
	6.1.14.67. RANGE(number-1 [, number-2] …)
	6.1.14.68. REM(number, divisor)
	6.1.14.69. REVERSE(string)
	6.1.14.70. SECONDS-FROM-FORMATTED-TIME(format, time)
	6.1.14.71. SECONDS-PAST-MIDNIGHT
	6.1.14.72. SIGN(number)
	6.1.14.73. SIN(angle)
	6.1.14.74. SQRT(number)
	6.1.14.75. STANDARD-DEVIATION(number-1 [, number-2] …)
	6.1.14.76. STORED-CHAR-LENGTH(string)
	6.1.14.77. SUBSTITUTE(string, from-1, to-1 [, from-n, to-n])
	6.1.14.78. SUBSTITUTE-CASE(string, from-1, to-1 [, from-n, to-n])
	6.1.14.79. SUM(number-1 [, number-2] …)
	6.1.14.80. TAN(angle)
	6.1.14.81. TEST-DATE-YYYYMMDD(date)
	6.1.14.82. TEST-DAY-YYYYDDD(date)
	6.1.14.83. TEST-NUMVAL(string)
	6.1.14.84. TEST-NUMVAL-C(string [, symbol])
	6.1.14.85. TEST-NUMVAL-F(string)
	6.1.14.86. TRIM(string[, LEADING|TRAILING])
	6.1.14.87. UPPER-CASE(string)
	6.1.14.88. VARIANCE(number-1 [, number-2] …)
	6.1.14.89. YEAR-TO-YYYY (yy [, yy-cutoff])

	6.2. GNU COBOL Statements
	6.2.1. ACCEPT
	6.2.1.1. ACCEPT Format 1 – Read from Console
	6.2.1.2. ACCEPT Format 2 – Retrieve Command-Line Arguments
	6.2.1.3. ACCEPT Format 3 – Retrieve Environment Variable Values
	6.2.1.4. ACCEPT Format 4 – Retrieve Full-Screen Data
	6.2.1.5. ACCEPT Format 5 – Retrieve Date/Time
	6.2.1.6. ACCEPT Format 6 - Retrieve Screen Information
	6.2.1.7. ACCEPT Format 7 – Retrieve Run-Time Information

	6.2.2. ADD
	6.2.2.1. ADD Format 1 – ADD TO
	6.2.2.2. ADD Format 2 – ADD GIVING
	6.2.2.3. ADD Format 3 – ADD CORRESPONDING

	6.2.3. ALLOCATE
	6.2.4. ALTER
	6.2.5. CALL
	6.2.6. CANCEL
	6.2.7. CLOSE
	6.2.8. COMMIT
	6.2.9. COMPUTE
	6.2.10. CONTINUE
	6.2.11. DELETE
	6.2.12. DISPLAY
	6.2.12.1. DISPLAY Format 1 – “UPON “device”
	6.2.12.2. DISPLAY Format 2 – Access Command-Line Arguments
	6.2.12.3. DISPLAY Format 3 – Access or Set Environment Variables
	6.2.12.4. DISPLAY Format 4 – Screen Data

	6.2.13. DIVIDE
	6.2.13.1. DIVIDE Format 1 – DIVIDE INTO
	6.2.13.2. DIVIDE Format 2 – DIVIDE INTO GIVING
	6.2.13.3. DIVIDE Format 3 – DIVIDE BY GIVING

	6.2.14. ENTRY
	6.2.15. EVALUATE
	6.2.16. EXIT
	6.2.17. FREE
	6.2.18. GENERATE
	6.2.19. GOBACK
	6.2.20. GO TO
	6.2.20.1. GO TO Format 1 – Simple GO TO
	6.2.20.2. GO TO Format 2 – GO TO DEPENDING ON

	6.2.21. IF
	6.2.22. INITIALIZE
	6.2.23. INITIATE
	6.2.24. INSPECT
	6.2.24.1. TALLYING Clause Syntax, Rules and Operation
	6.2.24.2. REPLACING Clause Syntax, Rules and Operation
	6.2.24.3. CONVERTING Clause Syntax, Rules and Operation
	6.2.24.4. INSPECT Region Clause, Rules and Operation

	6.2.25. MERGE
	6.2.26. MOVE
	6.2.26.1. MOVE Format 1 – Simple MOVE
	6.2.26.2. MOVE Format 2 – MOVE CORRESPONDING

	6.2.27. MULTIPLY
	6.2.27.1. MULTIPLY Format 1 – MULTIPLY BY
	6.2.27.2. MULTIPLY Format 2 – MULTIPLY GIVING

	6.2.28. NEXT SENTENCE
	6.2.29. OPEN
	6.2.30. PERFORM
	6.2.30.1. PERFORM Format 1 – Procedural
	6.2.30.2. PERFORM Format 2 – Inline

	6.2.31. READ
	6.2.31.1. READ Format 1 – Sequential READ
	6.2.31.2. READ Format 2 – Random Read

	6.2.32. READY TRACE
	6.2.33. RELEASE
	6.2.34. RESET TRACE
	6.2.35. RETURN
	6.2.36. REWRITE
	6.2.37. ROLLBACK
	6.2.38. SEARCH
	6.2.38.1. SEARCH Format 1 – Sequential Search
	6.2.38.2. SEARCH Format 2 – Binary, or Half-interval Search (SEARCH ALL)

	6.2.39. SET
	6.2.39.1. SET Format 1 – SET ENVIRONMENT
	6.2.39.2. SET Format 2 – SET Program-Pointer
	6.2.39.3. SET Format 3 – SET ADDRESS
	6.2.39.4. SET Format 4 – SET Index
	6.2.39.5. SET Format 5 – SET UP/DOWN
	6.2.39.6. SET Format 6 – SET Condition Name
	6.2.39.7. SET Format 7 – SET Switch
	6.2.39.8. SET Format 8 – SET ATTRIBUTE

	6.2.40. SORT
	6.2.40.1. SORT Format 1 – File-based Sort
	6.2.40.2. SORT Format 2 – Table Sort

	6.2.41. START
	6.2.42. STOP
	6.2.43. STRING
	6.2.44. SUBTRACT
	6.2.44.1. SUBTRACT Format 1 – SUBTRACT FROM
	6.2.44.2. SUBTRACT Format 2 – SUBTRACT GIVING
	6.2.44.3. SUBTRACT Format 3 – SUBTRACT CORRESPONDING

	6.2.45. SUPPRESS
	6.2.46. TERMINATE
	6.2.47. TRANSFORM
	6.2.48. UNLOCK
	6.2.49. UNSTRING
	6.2.50. WRITE

	7. Sub-Programming with GNU COBOL
	7.1. Subprograms, Subroutines and User-Defined Functions
	7.2. Specifying and Using Alternate Entry Points
	7.3. Dynamic Versus Static Subprograms
	7.4. Subprogram Execution Flow
	7.4.1. Subroutine Execution Flow
	7.4.2. User-Defined Function Execution Flow

	7.5. Sharing Data Between Calling and Called Programs
	7.5.1. Subprogram Arguments
	7.5.1.1. Calling Program Considerations
	7.5.1.2. Called Program Considerations

	7.5.2. GLOBAL Data Items
	7.5.3. EXTERNAL Data Items

	7.6. Nested Subprograms
	7.7. Recursive GNU COBOL Subprograms
	7.8. Combining COBOL and C Programs
	7.8.1. GNU COBOL Run-Time Library Requirements
	7.8.2. String Allocation Differences Between GNU COBOL and C
	7.8.3. Matching C Data Types with GNU COBOL USAGEs
	7.8.4. GNU COBOL Main Programs CALLing C Subprograms
	7.8.5. C Main Programs CALLing GNU COBOL Subprograms

	8. The GNU COBOL System Interface
	8.1. Using the GNU COBOL Compiler (cobc)
	8.1.1. Introduction
	8.1.2. Syntax and Options
	8.1.3. Compiling GNU COBOL Programs
	8.1.3.1. Compiling Directly-Executable GNU COBOL Programs
	8.1.3.2. Compiling Dynamically-Loadable GNU COBOL Subprograms
	8.1.3.3. Compiling Static GNU COBOL Subprograms

	8.1.4. Important Compilation-Time Environment Variables
	8.1.5. Locating Copybooks at Compilation Time
	8.1.6. Using Compiler Configuration Files

	8.2. Running GNU COBOL Programs
	8.2.1. Executing Programs Directly
	8.2.2. Using the “cobcrun” Utility
	8.2.3. Program Arguments
	8.2.4. Important Execution-Time Environment Variables

	8.3. Built-In System Subroutines
	8.3.1. “Call by Name” Routines
	8.3.1.1. CALL “C$CALLEDBY” USING prog-name-area
	8.3.1.2. CALL “C$CHDIR” USING directory-path, result
	8.3.1.3. CALL “C$COPY” USING src-file-path, dest-file-path, 0
	8.3.1.4. CALL “C$DELETE” USING file-path, 0
	8.3.1.5. CALL “C$FILEINFO” USING file-path, file-info
	8.3.1.6. CALL “C$GETPID”
	8.3.1.7. CALL “C$JUSTIFY” USING data-item, “justification-type”
	8.3.1.8. CALL “C$MAKEDIR” USING dir-path
	8.3.1.9. CALL “C$NARG” USING arg-count-result
	8.3.1.10. CALL “C$PARAMSIZE” USING argument-number
	8.3.1.11. CALL “C$PRINTABLE” USING data-item [, char]
	8.3.1.12. CALL “C$SLEEP” USING seconds-to-sleep
	8.3.1.13. CALL “C$TOLOWER” USING data-item, BY VALUE convert-length
	8.3.1.14. CALL “C$TOUPPER” USING data-item, BY VALUE convert-length
	8.3.1.15. CALL “CBL_AND” USING item-1, item-2, BY VALUE byte-length
	8.3.1.16. CALL “CBL_CHANGE_DIR” USING directory-path
	8.3.1.17. CALL “CBL_CHECK_FILE_EXIST” USING file-path, file-info
	8.3.1.18. CALL “CBL_CLOSE_FILE” USING file-handle
	8.3.1.19. CALL “CBL_COPY_FILE” USING src-file-path, dest-file-path
	8.3.1.20. CALL “CBL_CREATE_DIR” USING dir-path
	8.3.1.21. CALL “CBL_CREATE_FILE” USING file-path, 2, 0, 0, file-handle
	8.3.1.22. CALL “CBL_DELETE_DIR” USING dir-path
	8.3.1.23. CALL “CBL_DELETE_FILE” USING file-path
	8.3.1.24. CALL “CBL_ERROR_PROC” USING function, program-pointer
	8.3.1.25. CALL “CBL_EXIT_PROC” USING function, program-pointer
	8.3.1.26. CALL “CBL_EQ” USING item-1, item-2, BY VALUE byte-length
	8.3.1.27. CALL “CBL_FLUSH_FILE” USING file-handle
	8.3.1.28. CALL “CBL_GET_CURRENT_DIR” USING BY VALUE 0, BY VALUE length, BY REFERENCE buffer
	8.3.1.29. CALL “CBL_GET_CSR_POS” USING cursor-locn-buffer
	8.3.1.30. CALL “CBL_GET_SCR_SIZE” USING no-of-lines, no-of-cols
	8.3.1.31. CALL “CBL_IMP” USING item-1, item-2, BY VALUE byte-length
	8.3.1.32. CALL “CBL_NIMP” USING item-1, item-2, BY VALUE byte-length
	8.3.1.33. CALL “CBL_NOR” USING item-1, item-2, BY VALUE byte-length
	8.3.1.34. CALL “CBL_NOT” USING item-1, BY VALUE byte-length
	8.3.1.35. CALL “CBL_OC_NANOSLEEP” USING nanoseconds-to-sleep
	8.3.1.36. CALL “CBL_OPEN_FILE” file-path, access-mode, 0, 0, handle
	8.3.1.37. CALL “CBL_OR” USING item-1, item-2, BY VALUE byte-length
	8.3.1.38. CALL “CBL_READ_FILE” USING handle, offset, nbytes, flag, buffer
	8.3.1.39. CALL “CBL_RENAME_FILE” USING old-file-path, new-file-path
	8.3.1.40. CALL “CBL_TOLOWER” USING data-item, BY VALUE convert-length
	8.3.1.41. CALL “CBL_TOUPPER” USING data-item, BY VALUE convert-length
	8.3.1.42. CALL “CBL_WRITE_FILE” USING handle, offset, nbytes, 0, buffer
	8.3.1.43. CALL “CBL_XOR” USING item-1, item-2, BY VALUE byte-length
	8.3.1.44. CALL “SYSTEM” USING command

	8.3.2. “Call by Number” Subroutines
	8.3.2.1. CALL X”91” USING return-code, function-code, binary-variable-arg
	8.3.2.2. CALL X“E4”
	8.3.2.3. CALL X”E5”
	8.3.2.4. CALL X”F4” USING byte, table
	8.3.2.5. CALL X”F5” USING byte, table

	8.4. Binary Truncation

	9. So, You’re a New COBOL Programmer?
	9.1. Marking Changes in Programs
	9.2. Data Item Coding and Naming Conventions
	9.3. Table Subscripting versus Table Indexing
	9.4. Copybook Naming Conventions and Usage
	9.5. PROCEDURE DIVISION Sections Versus Paragraphs
	9.6. COMPUTE Versus ADD, SUBTRACT, MULTIPLY and DIVIDE

	10. Sample Programs
	10.1. FileStat-Msgs.cpy – File Status Values
	10.2. COBDUMP – A Hex/ASCII Data Dump Subroutine
	10.3. DAY-FROM-DATE – A Function to Determine Day of Week From a Date
	10.4. GCic – an Interactive GNU COBOL Full-Screen Compiler Front-End
	10.5. STREAMIO – A Utility Subroutine to Simplify Stream I/O

	11. Glossary of Terms
	Index
	GNU Free Documentation License

